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We introduce UbiPhysio, a milestone framework that delivers fine-grained action description and feedback in natural language
to support people’s daily functioning, fitness, and rehabilitation activities. This expert-like capability assists users in properly
executing actions and maintaining engagement in remote fitness and rehabilitation programs. Specifically, the proposed
UbiPhysio framework comprises a fine-grained action descriptor and a knowledge retrieval-enhanced feedback module. The
action descriptor translates action data, represented by a set of biomechanical movement features we designed based on
clinical priors, into textual descriptions of action types and potential movement patterns. Building on physiotherapeutic
domain knowledge, the feedback module provides clear and engaging expert feedback. We evaluated UbiPhysio’s performance
through extensive experiments with data from 104 diverse participants, collected in a home-like setting during 25 types of
everyday activities and exercises. We assessed the quality of the language output under different tuning strategies using
standard benchmarks. We conducted a user study to gather insights from clinical physiotherapists and potential users about
our framework. Our initial tests show promise for deploying UbiPhysio in real-life settings without specialized devices.
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1 INTRODUCTION
People’s domestic activities and exercise routines provide vital insights for health providers to understand their
difficulties, problems, and behavioral changes [11]. Recently, home-based physiotherapy concerning everyday
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Fig. 1. By accurately understanding the detailed movement patterns of a person, a physio is able to provide guidance on how
to make the exercise more effective and suggestions that could help them achieve the goal properly. Inspired by such vivid
and expert interactions, this work aims to narrow the gap between ubiquitous technology and the basic skill of a physio in
evaluating one’s action and generating detailed feedback.

functioning and regular exercise has gained increasing importance, given the benefits they provide for enhancing
individuals’ quality of life [47], maintaining functional independence [14], combating chronic diseases [35], and
promoting recovery from illness or injury outside hospital settings [43]. However, without guidance, individuals
can easily develop improper habitual behaviors that pose long-term musculoskeletal risks. For instance, bending
to pick up a heavy bag could significantly harm the lower back, whereas squatting and then lifting the bag
is a safer approach. Moreover, performing physical exercises without professional supervision can result in
ineffective training or even injury due to incorrect postures and movements. Another concern is the lack of
timely feedback in domestic settings, which can discourage those with chronic diseases from adhering to self-
organized rehabilitation programs, especially given the high cost of clinical services [20, 44]. Recent advances
in action captioning [18, 24, 30, 69, 71] and knowledge-driven natural language generation (NLG) [8, 13, 21, 51]
present an opportunity to create a system that can perceive, understand, and offer expert-like feedback on
home-based daily functional activities and exercises. Compared to existing works, our approach delves into
fine-grained action descriptions that encompass both the type of action and potential movement patterns that
could inform intervention. Furthermore, we introduce a simple yet efficient retrieval-based method that leverages
the common-sense knowledge of a large language model (LLM) to generate professional feedback.
As illustrated in Fig 1, we receive motivations from the real life scenario, where a physio provides direct

feedback on conducting an action properly and making the exercise doable and effective, grounded in a fine-
grained understanding of the user’s performance. In light of this, we ask: how can technology support people’s
daily functioning and exercises with expert-like action understanding and feedback? We introduce
UbiPhysio, the first framework of its kind designed to function as a virtual physiotherapist, facilitating daily
functional activities and supporting rehabilitation exercises. UbiPhysio accepts action data as input and connects
it to natural language through self-supervised tokenization. In contrast to previous approaches, we propose
employing biomechanical movement features and action-conditioned instruction tuning to deliver detailed action
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descriptions. Ultimately, leveraging the common-sense knowledge of a LLM, the framework generates vivid and
professional feedback using a retrieval-enhanced prompting strategy.

Our experiment leverages data collected from 104 participants, capturing full-body action data while performing
25 different types of daily functioning and exercise activity. We established the experiment with an aim to reveal
the performance of participants at their homes. We achieved this by converting the lab space into a furnished,
home-like environment, and implementing a continuous, less intrusive experimental session. To evaluate the
efficacy of UbiPhysio, we carried out rigorous cross-validation tests on unseen participants, measuring the
accuracy of the system’s language output with standard objective benchmarking tools. Additionally, we conducted
subjective evaluations with our participants and clinical physios. The results strongly suggest that UbiPhysio has
the potential to be successfully integrated into real-life scenarios, paving the way for future advancements in
ubiquitous fitness and rehabilitation technology. The main contributions of this work are summarized below.

• We introduce UbiPhysio, a milestone framework capable of delivering expert-like action descriptions
in terms of the action type and movement patterns-of-interest in natural language. It further generates
personalized and professional feedback to improve user engagement and performance.

• To enhance the framework, we propose two novel tuning strategies, including the integration of comprehen-
sive biomechanical bodily features for precise action quantification and the instruction tuning conditioned
by the action type to optimize language output results.

• We evaluate the framework with data collected from 43 healthy participants (22 males, 21 females, with an
average age of 28.125 (std: 8.951)) and 61 participants with chronic lower-back pain (20 males, 41 females,
with an average age of 32.582 (std: 10.433)) in a furnished, home-like environment. In addition to using
benchmark metrics, we conduct a user study with the participants and physios to gain realistic insights on
language outputs. Aside from using IMUs for full-body pose estimation by default, we test the framework
using pose inputs acquired with a visual system, to demonstrate its potential for real-life deployment.

2 RELATED WORK
This section provides a literature review on relevant studies on action-centric applications, as well as multimodal
language modeling with action data.

2.1 Analyzing Actions for Healthcare, Assistance, and Fitness
Recognizing the type or category of an action serves as the foundation of many ubiquitous systems and applica-
tions. However, human perception of actions extends beyond mere categorization, and are capable of inferring
the emotional and physical status, needs, and difficulties, based on detailed action patterns [3, 4, 15]. Therein, the
difference between a layperson and a domain expert lies in their ability to accurately capture such patterns
and respond with proper language. This capability is crucial for applications where technology is expected to
play the role of a specialist in relevant domains [66].

This work differs significantly frommany previous studies focusing on activities of daily living (ADLs) [5, 25, 45],
assisted fitness [10, 19, 26, 31], and remote rehabilitation [23, 55]. Most of these studies aim to identify discrete
activity classes and provide general insights, such as revealing behavioral changes (e.g., a decrease in exercise)
through longitudinal observations, detecting critical or abnormal activities (e.g., falls or prolonged bed rest)
[12], and assessing health risks by tracking specific activities like drinking and eating [7, 49]. Some studies
move on to evaluate the quality of an action using quantitative kinematic features to predict the development of
chronic diseases [32, 53, 54]. They monitor the execution of exercises by calculating metrics (e.g., speed, range of
movement, variations) against gold standards [10, 26, 31, 55], and detecting the presence of abnormal movement
behavior [59] to estimate the difficulty one may have in specific activities.
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Aside from the studies above on supporting people’s healthcare, assistive and fitness needs with diverse
ubiquitous technologies, we also found the following studies that move deeper into action understanding,
focusing on tasks that require more specific insights or feedback. Guo et al. [19] highlights the importance of
reminding the user to maintain proper posture during workouts. However, the feedback provided in their system
is based on the comparison of low-level features like repetition consistency and temporal differences between
normal and expert users, which is indirect for this purpose.

Wei et al. [65] proposed a system aimed at facilitating remote training for individuals with Parkinson’s disease.
This system is capable of action understanding and feedback generation for three actions (referred to as tasks in
their study), namely squat, forward lunge, and backward lunge. By analyzing angular features computed from
the pose estimation by Kinect [1], the system can identify errors in execution (i.e., violation of criteria set by
physios such as ‘keep the back knee straight’). Based on this analysis, the system then provides recommendations,
deciding whether the user should repeat the exercise, adjust the difficulty level (for instance, by reducing the
rotation angle or introducing additional support), or progress to the next level. In a separate study, Wang et al.
[62] only used a smartwatch to evaluate the quality of three upper-arm exercises, namely shoulder abduction,
external rotation, and forward flexion, and provide feedback on the number of repetitions, range of movements,
and stability of each exercise. Lee et al. [36] proposed a more comprehensive set of features to measure the
performance of stroke patients performing three upper limb exercises. By facilitating a collaborative approach
between the AI system and physiotherapists in determining which features to examine, they showed improved
evaluation results. These studies rely on what we can categorize as rule-based approaches, where the features
designed for action evaluation are derived from a convergence of quantitative computational methods (informed
by full-body pose or data from a wearable device attached to a specific body part) and qualitative analysis of
the specific action by domain experts. A major disadvantage of these approaches is the lack of generalizability
of the features, particularly when confronted with more complex movements with diverse patterns [38]. Also,
the feedback provided in these systems mainly evaluates the outcome or quality of the action, and falls short of
guiding a person to act more properly.

2.2 Modeling Actions with Natural Language Description
Modeling actions with natural language description is essential for understanding and interpreting the semantics
of human actions. Early investigations [27, 28, 48, 63, 67] on such a modeling process mainly focused on human
actions with large body movements (e.g., waving the hand), general action categories (e.g., walking around) and
explicit descriptions (e.g., counts of a specific gesture pattern). The user’s 3D pose series, represented in the
positions and attitudes of a set of body joints (e.g., 24 body key points under the SMPL model [41]), was taken as
the main input of motion-language models. Although Plappert et al. [48] and Yamada et al. [67] demonstrated
the feasibility of establishing a bidirectional mapping between human whole-body action and natural language,
the target pose sequences were usually deterministic or with limited variety, probably due to insufficient action
feature descriptions and the hard-supervised training process. To enrich the description space for capturing
the dynamics and kinetic features of human motion, Holden et al. [27, 28] utilized rigid body dynamic features
such as joint velocity, orientation, and foot contact state for better modeling of human action in temporal and
spatial domains. Guo et al. [17] introduced a temporal variational autoencoder framework, guided by a learned
distribution function, to construct a probabilistic mapping between action sequences and textual descriptions.

Although the abovementioned work managed to bridge general motions and semantics, the problem become
far more challenging given a finer granularity (e.g., mining certain micro-expressions) or specific attention
patterns (e.g., telling the difference of different walking patterns) for the description target [57, 71]. This challenge
originates from the inherentmodality discrepancy between text and action series, whichwould result in substantial
ambiguity and information loss in the interpretation process. From a higher perspective, human motions are
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far more complex than they appear to be. For example, a “walking” action series could potentially indicate the
subject’s mental state (e.g., casually or hurriedly) and physical state (e.g., any disease-related features from clinical
observations). Aiming at these challenges, previous work have investigated different methods and models for
enriching action representation in different levels of hidden semantic spaces. For example, VQ-VAE (Vector
Quantized Variational Autoencoder) [57] presented an elegant solution of discretizing the hidden distributions
into parameterized “codebooks” to increase the capacity of hidden semantics. Guo et al. [18] proposed the use
of compact and discrete action tokens to offer a more flexible and adaptable array of action representation for
generating text descriptions and the inverse process based on VQ-VAE [57], which achieved modeling explicit
connections between atomic actions and fine-grained semantics. Kim et al. [34] present a joint representation
model of human action and language with contrastive learning by leveraging both unpaired and paired action
and language datasets. HUMANISE [64] investigated the representation of scene-aware and goal-oriented human
motions. Taking advantages of the success of large language models (LLMs), Zhang et al. [69] introduced a
LLM-based framework (e.g., a transformer architecture with 12 layers), leveraging the semantic expressiveness of
LLMs, to yield high-quality discrete representations of human action given language instructions as input. Later
on, other language models like T5 [9, 50] and Llama [56] are also adopted to promote the accuracy in building
action-language interactions with a similar pipeline [30, 71]. In our work, we took the first step to improve
the capability of VQ-VAE for representing fine-grained movement patterns and fine-tune language models for
comprehensive action description. Therein, we collect feedbacks and comments from clinical physios, so that to
provide accurate and professional training guidance.

3 METHOD
This section details our proposed framework, providing a comprehensive roadmap from the initial preprocessing
of action data input to the final generation of detailed feedback.

3.1 Biomechanical Features-Driven Action Tokenization
In our proposed framework, we begin by discretizing the continuous action data into succinct tokens. This
process facilitates the learning of the language model by establishing a mapping between these discrete action
tokens and corresponding language tokens.

3.1.1 Biomechanical Features. We build on the discretization process driven by low-level features extracted from
comprehensive full-body action data. As demonstrated in prior research [18, 30, 69, 71], this mainly includes each
joint’s rotation-invariant position, orientation, and velocity. Given a skeleton of 24 joints, as shown in Fig 2, a
total of 287 features can be extracted. Such a methodology enables the generation of descriptive phrases that
characterize a person’s actions, for example: “The person is standing up from a chair and walks forward in a circle”.
However, our preliminary experiments, which replicated their pipelines, revealed limitations in producing

accurate and consistent descriptions of diverse movement patterns, e.g., “This individual is practicing body side
bend, but with reduced mobility and a tendency to bend the spine and knees.” To help the network learn a more
informative discrete codebook and increase its robustness to noise and variations in lower-level features, we have
developed an additional set of higher-level features. This was done in collaboration with physios: we transformed
the bodily evidences they rely on in their clinical practices into computable biomechanical features. Details of
these additional features are as follows:
• Bilateral balance:

featsBB, upper = D(Jleft forearm, Jspine2) − D(Jright forearm, Jspine2)
featsBB, lower = D(Jleft foot, Jhip) − D(Jright foot, Jhip) + D(Jleft leg, Jhip) − D(Jright leg, Jhip)

(1)
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Fig. 2. The skeleton of the default ac-
tion data used in this study. Among
the 24 joints, darker ones stand for
those used for the computation of
biomechanical features.

Fig. 3. The confusion matrix for the action classification result of our action
recognition module.

• Inter-joint angle:
featsIJA = [∠(Jleft shoulder, Jspine2, Jspine1), ∠(Jright shoulder, Jspine2, Jspine1), ∠(Jspine2, Jspine1, Jspine),

∠(Jspine1, Jspine, Jhip), ∠(Jspine1, Jhip, Jleft upperleg), ∠(Jspine1, Jhip, Jright upperleg),
∠(Jspine1, Jhip, Jleft leg), ∠(Jspine1, Jhip, Jright leg), ∠(Jleft upperleg, Jleft leg, Jleft foot),
∠(Jright upperleg, Jright leg, Jright foot), ∠(Jleft shoulder, Jspine2, Jhip), ∠(Jright shoulder, Jspine2, Jhip),
∠(Jleft shoulder, Jhip, Jright shoulder), ∠(Jleft leg, Jleft foot, Jleft footend), ∠(Jright leg, Jright foot, Jright footend)]

(2)

• Inter-line angle:
featsILA = ∠(Jleft shoulder, Jright shoulder, Jleft upperleg, Jright upperleg) (3)

• Inter-joint distance and ratio:
featsIJD = [D(Jleft shoulder, Jhip),D(Jright shoulder, Jhip),D(Jhip, Jleft foot),D(Jhip, Jright foot),

D(Jleft forearm, Jleft leg),D(Jleft forearm, Jright leg),D(Jright forearm, Jleft leg),D(Jright forearm, Jright leg)]
(4)

featsIJR = [
D(Jleft forearm, Jright leg)
D(Jleft forearm, Jleft leg)

,
D(Jright forearm, Jleft leg)
D(Jright forearm, Jright leg)

] (5)

where J∗ refers to corresponding joints. D(∗, ∗) represents the Euclidean distance, taking 3D joint positions
as input, with D(𝑎, 𝑏) =

√︁
(𝑎𝑥 − 𝑏𝑥 )2 + (𝑎𝑦 − 𝑏𝑦)2 + (𝑎𝑧 − 𝑏𝑧)2 . The inter-joint (with three joints) and inter-

line (with four joints) angle is computed as ∠(𝑎, 𝑏, 𝑐) = arctan
(
| | ®𝑎𝑏× ®𝑏𝑐 | |

®𝑎𝑏 · ®𝑏𝑐

)
, and ∠(𝑎, 𝑏, 𝑐, 𝑑) = arctan

(
| | ®𝑎𝑏× ®𝑐𝑑 | |

®𝑎𝑏 · ®𝑐𝑑

)
,

respectively. It should be noted that the above features are computed for each timestep, presenting potential
opportunities for the real-time deployment of our system. The total number of features computed here is 28.
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We provide such details here as not only to support the replication of this work, but also to inform researchers
working on rule-based applications about the features that could be considered for action pattern analysis.

3.1.2 Action Tokenization. By computing the features per timestep, for each action sequence of duration 𝑇 ,
we have X = {𝑥𝑡 }𝑇𝑡=1 and 𝑥𝑖 ∈ R𝑑𝑎𝑐𝑡𝑖𝑜𝑛 , where 𝑑𝑎𝑐𝑡𝑖𝑜𝑛 is the dimension of features, which is 315 for a pose data
input of 24 joints. A VQ-VAE model [57] is further used to learn the discrete action tokens, using a codebook
of length 𝐾 , denoted as B{𝑏𝑘 }𝐾𝑘=1 and 𝑏𝑘 ∈ R𝑑𝑐𝑜𝑑𝑒 . Similar to other encoder-decoder architecture, the encoder
of VQ-VAE first encodes the input action features into latent vectors with 1D convolution as E(X) = H, with
H = {ℎ𝑛}𝑁𝑛=1, 𝑁 = 𝑇 /𝑙 , and 𝑙 denotes the downsampling rate of the convolutional encoder. Then, the quantization
through the codebook B is carried out to search for the most close counterpart vector 𝑏𝑘 for each encoded latent
vector ℎ𝑛 as:

𝑧𝑛 = argmin
𝑏𝑘 ∈B

∥ℎ𝑛 − 𝑏𝑘 ∥2, (6)

where the sequence of indexes of all the searched 𝑏𝑘 in the codebook B, denoted as Q = [𝑞1, ...𝑞𝑁 ] with
𝑞𝑖 ∈ [1, 2, ..., 𝑞𝑁 ], becomes the sequence of tokens for the input action, which is used to fine-tune a language
model as described later. Thereon, the decoder reconstructs the input action data with Xr = D(Z). The VQ-VAE
is trained in a self-supervised way given the loss computed against the input action data as:

L𝑣𝑞𝑣𝑎𝑒 = L𝑟𝑒𝑐𝑜𝑛 + ∥H − 𝑠𝑔[Z] ∥2 + 𝛽 ∥𝑠𝑔[H] − Z∥2, (7)

where the three parts of the total loss stand for the reconstruction loss of the VAE, and the embedding and commit-
ment losses of the quantization process, 𝑠𝑔[·] denotes stop-gradient operation, 𝛽 is a weighting hyperparameter.
Motivated by the velocity regularization used in [69], the reconstruction loss is added with the regularization
from reconstructing the biomechanical features as:

L𝑟𝑒𝑐𝑜𝑛 = |X − Xr | + 𝛼 |X[bio] − X[bio]𝑟 |, (8)

where X[bio] stands for getting out the biomechanical features from the original (or reconstructed) data, 𝛼 is a
balancing hyperparameter. The L1 smooth loss is used in our experiment according to existing works [30, 69, 71].

3.1.3 Human Action Recognition Module. During our experiments, we found it effective to insert the action type
information into the instruction for tuning language models to improve its performance on describing the detailed
movement patterns. A similar finding is also reported in [59], where the inclusion of activity type information
was found to be advantageous in improving the detection of specific movement behaviors. Furthermore, the
action type information can also be used as a query to extract background knowledge from our pre-defined
knowledge base, enhancing the feedback of a language model.
By utilizing the proposed action features extracted from each action instance as input, we trained a 1D

convolutional neural network to classify the different action types, i.e., 𝑦 = ConvNet(X), 𝑦 ∈ Y𝐶 , where 𝑦 is
the predicted action label, 𝐶 is the number of action classes. For the dataset we collected, which is described in
detail in the next section, the network is able to achieve an average macro F1 score of 0.9636 with a standard
deviation of 0.0067, after five different runs of validation (each run divides participants with 85% for training,
5% for validation, and 10% for testing). The confusion matrix is shown in Fig 3. The mistakes are mostly about
misclassifying sitting on the chair vs. on the sofa, and heel-walking vs. heel-to-toe walking. Please kindly refer to
Appendix A for details about the convolutional backbones used in this module and the VQ-VAE model.

3.2 Action-Conditioned Description with a Language Model
An overview of our proposed UbiPhysio framework is shown in Fig 4. After the step 1 of extracting discrete
action tokens, namely the sequence of indexes of codebook representations that found most close to our encoded
action features, we conduct the fine-tuning of a language model for action description in step 2. Following the
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Fig. 4. With 3D body poses as input, we first calculate a set of movement features per timestep, which are designed to
characterize the local dynamics of each body part and movement patterns. Then, we conduct a self-supervised feature
quantization step to acquire discrete tokens for each action instance. We use a Sequence-to-Sequence (Seq2Seq) language
model to convert such tokens into descriptive texts, detailing the type of action and potential movement patterns. Thereon,
together with the user profile, we further adopt a retrieval-enhanced autoregressive language model to generate physio-like
feedback and suggestion.

instruction structure adopted in [30, 71], we formalize the instruction prompt for each action instance using a
mix of texts and action tokens as follows:

• Task prompt T : {I want you to act as an action interpreter. Given the type of human action and tokens
representing the action, please generate a natural language description of the action.}

• Condition input: {The action you need to describe is as following, type: [𝑦], tokens: [Q].}
The action type information 𝑦 is particularly added here to make action-conditioned input to the language

model, given our experimental results that are reported later. We will also demonstrate that such a piece of
information help the model better understand the movement patterns hidden in the action tokens. Thereon,
for each action instance, the complete instruction tuning pair we prepare for a language model includes, the
complete input prompt {T , 𝑦,Q}, and the label of action description 𝑆gt. It should be noted that the categorical
label 𝑦 is translated into texts here. The optimization of the language model (LM) is as follows:

L𝑙𝑚 = −
𝐿∑︁
𝜃

log𝑝𝜃 (𝑆gt |{T , 𝑦,Q}), (9)

where 𝐿 denotes the output length of the language model. Please kindly refer to Appendix A for details about the
exact data structure prepared for tuning different language models.

3.3 Retrieval-Enhanced Feedback Generation
The common sense knowledge of existing large language models (LLMs) come from their pretraining against
a huge amount of textual data. By providing the LLM (taking GPT-41 for example) with the detailed action
description 𝑆 , it could yet give some generic feedbacks as follows:

• Prompt: {You are acting as an expert of sport rehabilitation, you will support a person (age: 32, reported pain
score: 4 (0-10), Time-Up-and-Go score: 12 seconds) during the following session. From now, you will receive detailed
1The OpenAI ChatGPT (https://chat.openai.com/) at its August 3rd, 2023 version.
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action descriptions about their performances, to which you should provide instant feedback to help this person conduct
each exercise properly. Action description: [This individual compensates for the body side bend with bended knees].}

• Original response: {I noticed that you’re bending your knees to compensate for the side bend. It’s essential to
maintain straight knees to get the most benefit from the exercise and to target the right muscles. Focus on keeping
your knees extended and try to bend from your waist. This will ensure proper alignment and maximize the benefits
of the exercise. Let’s try that again and keep those knees straight!}
As is shown, the LLM is able to suggest a direct way of correcting the action and help the user maintain a

full engagement of the exercise. However, if such a pattern persists, the language model would continue asking
the person to try to stretch the knee, instead of suggesting an option that require less of this person, during
our multi-round conversation with it. Whereas, a physio at this moment would suggest, “let’s try this exercise
again while seating on a chair”. We believe such a piece of knowledge from the domain expert will strengthen the
language model to better act vividly and professionally. By providing this information to GPT-4, its response is
improved as follows:

• Knowledge-enhanced response: {I understand that you might be facing some challenges with this exercise. To
ensure your comfort and safety, consider doing the training while seated. This way, you can get a better grip on
the movement without feeling too strained or in pain. We can take it step by step, aiming for gradual progress while
staying comfortable.}
Here, via a workshop with clinical physios, we collect a rehabilitation knowledge base D = 𝑑 detailing the

low-demand and high-demand feedbacks they would consider for different movement patterns per each of
the actions that included in this work. The low-demand ones refer to the suggestion that require less of the
participant’s capacity, it usually proposes an alternative way to perform the action properly, e.g., carry out side-
bend against a wall if trunk rotation or hip lateral shift are found. Whereas, the high-demand suggestion point to
the way of correcting the movement patterns in a straightforward manner. We organize the data along an index
corresponding to different action types. Thus, the knowledge for action type 𝑦 is retrieved as 𝑑 ∈ D : I(𝑑) = 𝑦,
where I(·) denotes the index function.

4 EXPERIMENT
This section presents the experimental details, including the collection of a large-scale action-language dataset
and the implementation details of our framework.

4.1 Data Collection in a Home-Like Space
Targeting the future deployment of our proposed UbiPhysio framework at home, we converted a lab room into a
modern-style living space, as shown in Fig 5. This space is equipped with essential furniture and equipment that
facilitate daily activities and home exercises. These include a television (TV), chair, sofa, soft carpet, bed, cushions,
and green plants. Although not visible in the figure, other items such as a broom, yoga pad, and a suitcase loaded
with 2.5Kg are also used during the experimental sessions, particularly for daily activities like sweeping the floor
and carrying heavy objects. Instead of using stand-alone cameras that may cause discomfort to the participant,
we choose to use three mobile phones to record the session, which are small and user-friendly. They are put at
the top of the TV (facing the participant at 0°), the corner of the space (at 65°), and the middle-left border of the
space (at 90°, where Fig 5 (a) is captured). The visual data is collected to aid the annotation from physios and
open opportunities for vision-based pose estimation that may speed up the deployment of our framework. This
experiment is approved by the Institutional Review Board (IRB) of the University.

4.1.1 IMUs and the Custom-Made Suit. To collect the action data, we use the wireless IMU sensors from Noitom
[2] together with our custom-made suit (as shown in Fig 6) that allows direct attachment of the sensor without
using extensive bandages. The raw IMU data collected by the sensor was processed by manufacturer-provided
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Fig. 5. (a) The furnished, home-like space used during data collection, which is prepared to reduce the gap between the lab
and the normal living space of a user. (b) The spatial distribution of actions performed in the experiment.

software to compute pose in 3D coordinates, which constituted the raw data utilized in this study. The sensor
operates at 60Hz and is equipped with an internal battery and a 2.4G Hz Wi-Fi communication module. Based on
our experiences, it typically lasts for a continuous usage of approximately four hours. The suit is available in
different sizes (e.g., S, M, L, XL, XXL) and is thin, breathable, and stretchable. It received positive feedback from
our participants, with comments such as “It wears just like my yoga suit”. To maintain hygiene, we prepared three
suits for each size, ensuring that each participant wore a clean suit at their arrival. It should be noted that for
a comprehensive full-body motion capture, we additionally utilized a pair of soft, breathable gloves and three
bandages to attach IMUs to the participants’ hands, feet, and head, respectively. Totally, 17 IMUs were used, with
12 attached directly onto the suit.

Fig. 6. The wearable motion capture device with IMUs. (a)-(d): By stitching Velcro pads onto the anatomical points of our
custom-made suit, the wireless IMU sensors with Velcro pads are directly attached onto the suit; this design largely reduces
the discomfort of the user, and helps them perform more naturally during the experiment. (e): We additionally used a pair of
soft, breathable gloves and three bandages to attach IMUs to the hands, feet, and head respectively.

4.1.2 Daily Activities, Exercises, and Diverse Participants. The collected data could be categorized into two
groups, namely activities of daily life and exercises that are commonly incorporated in fitness and rehabilitation
programs. A comprehensive overview of all actions is shown in Fig 7. These specific actions were chosen for their
effectiveness in engaging the back muscle groups [16, 22, 33] Additionally, our physio collaborators confirmed
the safety of these actions for our participants. During recruitment, we set a clear inclusion criteria to exclude
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Fig. 7. Our experiment considers actions that cover daily functioning, fitness, and rehabilitation activities. Numbers in
quotations represent the possible movement patterns, each of which may exist alone or in a combination with others.

individuals with significant health risks or conditions that could impact motion. By advertising on social media
and relevant platforms, we recruited 43 healthy participants (22 males, 21 females, with an average age of 28.125
(std: 8.951)) to simulate daily fitness scenarios, and 61 participants with chronic lower-back pain (20 males, 41
females, with an average age of 32.582 (std: 10.433)), i.e., having experienced painful events for at least 3 months,
for home-based rehabilitation scenarios. The only difference in our system in dealing with these two groups of
participants lies in the generation of feedback from different perspectives. That is, the language model acts as a
coach for healthy individuals and as a physio for chronic pain sufferers.

4.1.3 A Continuous Session with Small Interventions. Each participant took a single data collection session,
consisting of two stages. First, as we assisted the participant in wearing the suit, we briefed them on the key
aspects of the experiment. This includes the designated area for floor sweeping, the suitcase and pillow to be
carried, and the path along which walking actions should be performed.We also allowed participants to familiarize
themselves with all the actions, offering practice if necessary. Fig 5 (b) illustrates the spatial distribution about
how these actions are conducted within the experimental space. Secondly, participants performed each action
independently. A visual-acoustic reminder was displayed on the television, indicating the action to be performed
and counting the remaining repetitions. Although the counting was manually operated by the experimenter,
participants were informed that a real-time automatic action recognition system is in use. This Wizard-of-Oz
design aimed to minimize the experimenter’s intervention in participants’ behaviors. Except for obvious errors,
participants were assured that the experimenter would not intervene, and there was no need to seek confirmation
of correctness. Only one experimenter remains in the room during the formal data collection stage. Each action
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was followed by a rest period, and participants could request longer intervals if needed. The average duration of
a complete data collection session was approximately 25 minutes. The annotation of action types was conducted
concurrently with each experimental session, where the experimenter marks the onset and offset timestamps for
each performed action. A post-hoc inspection is carried out to correct potential errors.

For this study, we left out the transitions between different actions, primarily comprising standing still, casual
walking, and self-massage. By extracting each single action instance (i.e., a single execution) and segmenting the
longer actions (i.e., sweeping the floor and chest fly) into 15-seconds non-overlapping windows, we obtain 9548
action instances from 104 participants. Each instance lasts from 2 to 20 seconds. While we initially recruited 119
participants, 15 were excluded given IMU-drifting flaws in poses after visual inspection of the data.

4.2 Collaborating with Clinical Physios
A committee consisting of 3 clinical physios was established to aid this work. The physios were recruited from
the rehabilitation center of a national hospital. They first helped design inclusion criteria for participants, action
types to be considered, and the procedure of sessions. Their other tasks include annotating possible movement
patterns (as detailed below), giving practical feedback on diverse action performances via a workshop (as part of
the method described in Section 3.3), and evaluating the language output of our proposed framework (as reported
in results of the user study in Section 5.2).

As shown in Table 1, we first settled down the scope of movement patterns that physios normally consider in
their clinical practice, the indexes of these patterns are also provided for each action depicted in Fig 7. These
movement patterns typically serve as evidence for physios to provide feedback and support during clinical
rehabilitation sessions, as well as in telemedicine scenarios [6]. Compared to the metrics used in some previous
studies [59–61], they offer more insight into the specific improper movement behaviors of different body parts.
Furthermore, this extensive set of patterns suggests that traditional machine learning methods might require
downsampling these patterns into fewer discrete classes to maintain effective performance. In contrast, modeling
the action patterns using natural language presents as a more flexible and informative approach.
By accessing synchronized video data collected from three different viewing angles during the experiment,

physios annotated each individual action instance. Particularly, they selected one or more patterns from the
candidates reported in Table 1. Therefore, it was possible for multiple movement patterns to be marked at the same
time for a single action instance. Throughout this annotation process, we held discussions to reach agreements
among physios. Based on the annotations, we employ GPT-4 to generate the natural language description for
each action type with different movement patterns. To guide this process, we provided templates outlining

Table 1. The reference table for the movement patterns included in this work.

Index Patterns Index Patterns Index Patterns
1 Lumbar Flexion/Extension 12 Lumbar Hyperextension/Swayback 23 Uneven Bilateral Loading
2 Lumbar Hyperextension after Lifting

Heavy Objects
13 Trunk Deviation from Midline/Trunk Lat-

eral Shift
24 Thoracic Hyperextension Compensating

for Shoulder Joint Movement
3 Getting Up Directly from / Lying Down

Directly into a Supine Position
14 Hip Hyperflexion 25 Insufficient Ankle Dorsiflexion

4 Trunk Rotation 15 Upper Chest Depression 26 Trunk Anterior Lean
5 Hip Lateral Shift 16 Hip Tilt 27 Incorrect Walking Pattern
6 Spinal Extension 17 Lumbar Lateral Flexion 28 Lumbar Lift off the Bed
7 Cervical Lateral Flexion Compensation 18 Trunk Flexion 29 Same-side Hand and Foot Movement
8 On tiptoes/Pelvic Tilt 19 Excessive Anterior Knee Displacement 30 Head Not Touching the Ground
9 No Trunk Activity 20 Upright Trunk Squat 31 Thigh Not Perpendicular to the Floor
10 Knee Flexion Compensation 21 Excessive Hip and Knee Flexion An-

gle/Too Deep Squat
32 Calf Not Parallel to the Bed Surface/Calf

Dangling
11 Lumbar Hyperextension/Pelvic Anterior

Tilt
22 Shallow Squat 33 Hip hyperextension leading to lumbar hy-

perextension
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the essential elements of the descriptions, ensuring they encompass both the action type and the associated
movement patterns. Three different descriptions are generated for each action-pattern combination. The average
length of the description is 15 words, with a maximum of 25 words. Examples of the description are as follows:

• Action type: <shoulder wrap>, movement patterns: <11-lumbar hyperextension>, description: “When execut-
ing a shoulder wrap, this individual exhibits poor core stability and their waist is overextended.”.

• Action type: <hand lift in kneeling position>, movement patterns: <4-trunk rotation, 13-trunk lateral shift>,
output: “In the kneeling hand forward exercise, this individual moves their trunk laterally.”.

• Action type: <leg lift in kneeling position>, movement patterns: <12-Lumbar hyperextension, 14-Hip hyper-
extension>, output: “This individual overextends their hip, causing their back to arch excessively when performing
the kneeling leg backward exercise.”.

4.3 Implementations
During the feature extraction process, the raw 3D pose data is normalized through skeleton normalization and
rotation to face the Z+ direction. After feature extraction, the dimensionality of the action data is 315. The first
287 features are derived from methodologies used in previous studies [18, 30, 69, 71] and the last 28 features are
the ones proposed as above in this work to help capture the more subtle movement patterns. For all experiments,
the data collected from the 104 participants was split into training, validation, and test sets, comprising 85%,
5%, and 10% of the data, respectively. It was ensured that there was no subject overlap among these sets. We
report the metrics scores obtained on the test set for each method. We additionally report the 95% confidence
interval to illustrate the variability in performance, using results from different participants or folds. For language
modeling, we evaluate various open-sourced foundational language models, including T5 (in its small, base, large,
and 3B variants) [50], Llama 2 7B[56], and ChatGLM2 6B[13, 68]. We use an extensive set of benchmark metrics
to evaluate the output of each language model against the annotated description, including Bleu [46], Rouge
(F-scores) [39], Cider [58], and BertScore (F-scores) [70]. To reveal significance in the pair-wise comparison,
Wilcoxon Signed-rank test is used. For multiple comparisons, Friedman test is additionally used. These statistical
tests are conducted with per-metric and per-subject scores.

The duration of a complete training on a single RTX 4090 graphics card of VQ-VAE is 18 hrs, and are as follows
for the action-language modeling: T5 small (3 hrs), T5 base (4.9 hrs), T5 large (4.5 hrs), T5 3B (8.9 hrs), Llama 2 7B
(5 hrs, for 3 epochs), and ChatGLM2 6B (24 hrs). It should be noted that, for smaller models, the training could
have met the GPU inefficiency problem, leading to suboptimal utilization of the high-performance graphics card
and longer training time. Please kindly refer to Appendix A for details of the hyperparameters used for each
model, and the computation of different metrics.

4.4 User Study
Aside from using standard objective benchmarks to evaluate outputs of the language model, we also present a
straightforward picture of the performance of our proposed framework by collecting feedback from prospective
users and physios. We conduct a user study with these groups to evaluate the quality and acceptability of the
action description and feedback generated by the language model. For action description, the T5 large model
with a window length of 64 and action-conditioned instruction tuning is used. For retrieval-enhanced feedback
generation, we utilize GPT-4 with the following prompt: “You are now a physiotherapist to support the daily
functioning and exercise of a person. In the following, you will receive the <knowledge> specifying the pre-defined
low-demand and high-demand feedbacks for the action, <user profile> indicating the age, self-reported pain score
(0-10), and Timed-Up-and-Go (TUG) score, <action description> detailing the action type and movement patterns
of the person. You need to return the <instant feedback> in a vivid tongue”. For healthy participants, the role of a
physiotherapist is transferred to a fitness coach.
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Fig. 8. The adopted questionnaire, rated by the participant as shown in the video and physios.

We create a questionnaire that includes both the model-generated outputs and the actual action descriptions
(ground truth). Feedbacks generated with or without our retrieved domain knowledge are also included. These
elements are randomly organized in the questionnaire presented to users, in a 50% by 50% ratio, in order to
eliminate any potential bias. The questionnaire, as shown in Fig 8, is composed of multiple sections, each
presenting a video of an action instance, paired with its action description and feedback. We reach out to 15
participants that are randomly selected from the testing folds, and invite them to complete the questionnaire,
where each of them rates upon their own videos. In addition to participants, the physio collaborators also
participate in this user study from a professional perspective. They rate action description and feedback for each
video using a standard 5-point rating scale.

5 RESULTS
The objective evaluation of our framework in terms of its language output is reported in this section, where we
look at performances given different foundational language models and tuning strategies that proposed in this
work. Additionally, we conducted a user study with participants and physios to collect the subjective preference
and opinions about the output of our framework. Finally, we look into the practical deployment of our system in
real-world scenarios without specialized devices, highlighting the potential and limitations of our framework.

5.1 Quantitative Evaluation of Action Description with Language Models
We first compare the performance of open-sourced foundation models on our action description task with
benchmark metrics for natural language generation tasks. The action tokens provided here belong to two groups,
the first is acquired by training the VQ-VAE with the 287 features that widely adopted in recent action-language
modeling studies [18, 30, 69, 71], while the other is acquired by adding our proposed biomechanical features that
provide the input features to VQ-VAE in a dimension of 315. A window length of 64 is applied during the training
of VQ-VAE. The action label is removed from the tuning instructions, and the description label comprises full
descriptions of the action type and movement patterns. Results of a standalone cross validation experiment are
reported in Table 2.
The results confirm the effectiveness of our proposed biomechanical features (Dim.=315) in assisting the

VQ-VAE model, and consequently the language models, in better capturing the diverse movement patterns hidden
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Table 2. The comparison of different foundational language models on our action description task with different feature
sets as input. Params.= the number of trainable parameters, Dim. = the dimension of the input action data, Iter. = the total
number of training iterations. The best results under different feature inputs are highlighted in bold.

Model Params. Tuning Dim. Iter. Bleu@1 ↑ Bleu@4 ↑ Rouge 1 ↑ Rouge 2 ↑ Rouge L ↑ Cider ↑ BertScore ↑
T5 small 80M Full-params. 287 50K 63.40±2.79 41.94±4.14 58.71±3.05 44.08±3.95 55.45±3.2 1.44±0.16 56.80±3.23
T5 base 248M Full-params. 287 50K 61.56±2.78 39.04±3.75 57.12±2.89 41.60±3.76 53.21±3.01 1.31±0.15 53.47±3.22
T5 large 783M Full-params. 287 50K 66.38±2.21 44.75±3.56 62.37±2.45 48.02±3.35 60.01±2.59 1.49±0.14 58.52±2.66
T5 3B 3B LoRA 287 100K 65.37±3.32 43.29±4.82 62.55±3.64 48.23±4.78 59.86±3.76 1.42±0.2 56.04±3.68
ChatGLM2 6B 6B P-tuning v2 287 10k 38.67±1.11 13.56±1.28 35.35±1.21 17.76±1.35 32.93±1.19 0.13±0.05 21.86±1.04
T5 small 80M Full-params. 315 50K 64.09±2.55 42.89±3.94 60.64±2.65 46.24±3.73 57.74±2.81 1.44±0.16 56.70±2.87
T5 base 248M Full-params. 315 50K 65.09±2.49 42.86±3.74 60.93±2.62 46.61±3.49 57.68±2.83 1.43±0.15 56.29±2.82
T5 large 783M Full-params. 315 50K 68.21±2.45 47.64±3.38 64.74±2.78 50.95±3.38 61.39±2.85 1.62±0.14 59.84±2.93
T5 3B 3B LoRA 315 100K 66.70±3.36 45.67±4.9 62.64±3.68 49.35±4.8 60.47±3.8 1.51±0.19 57.69±3.85
ChatGLM2 6B 6B P-tuning v2 315 10K 57.54±1.45 33.78±1.84 53.46±1.68 37.63±1.95 49.90±1.71 1.07±0.07 48.94±1.63

behind each action. Except for T5 small, the use of action tokens driven by these features led to improvements
across all metrics of different models. The improvements are significant for T5 base and ChatGLM2 6B (𝑝 < 0.05).
For T5 small (Bleu@1 (𝑝 = 0.048), Rouge 1 (𝑝 = 0.035), Rouge L (𝑝 = 0.022)), T5 large (Cider (𝑝 = 0.01), Rouge
2 (𝑝 = 0.095), BertScore (𝑝 = 0.076)), and T5 3B (Bleu@4 (𝑝 = 0.083), BertScore (𝑝 = 0.055)), improvements are
also significant or approaching significance. It is worth noting that these features are computed per timestep,
providing a promising opportunity for real-time operations.
As the results indicate, the T5-large model generally demonstrates the most promising performance in this

action description task, despite its smaller size compared to large language models (LLMs) such as Llama 2 7B
and ChatGLM2 6B. The Llama 2 7B model’s fine-tuning on our data for this task was unsuccessful, despite our
attempts to modify various hyperparameters of the LoRa framework, learning rate, and input/output lengths. In
the first section of this table, while the Bleu scores of T5 3B are smaller than T5 large, the Rouge-N scores of
them are the inverse. This could suggest that, since Bleu focuses on the precision alone, T5 3B generated texts
that better cover words in the ground truth but either with more inaccurate words or with a shorter length and
was penalized. Therein, given the ground truth of “While executing a right leg lift, this individual is showing hip
lateral shift”, the output from T5 3B is “This individual is raising their right leg while standing”, while T5 large
predicts “This individual lacks trunk stability whilst performing a right leg lift”. Although both of the methods
capture 6 words in the ground truth, the Bleu scores of T5 3B were penalized for its shorter length. The Rouge-N
scores of T5 3B are higher because this metric does not penalize the shorter length. The better performance
of T5 large is measured by Rouge-L, which considers the longest common subsequence instead of fragmented
words. Generally, an objective evaluation of language models benefits from a diverse set of metrics. Additionally,
incorporating human preferences, though more resource-intensive, offers valuable insights.
In general, the performance disparities among the models may stem from their different architectures and

training objectives. The task at hand resembles language translation, converting discrete action tokens (a form of
“second language”) into formal language. This task might be more effectively tackled by sequence-to-sequence
(Seq2Seq) models, such as the T5 family. For LLMs like Llama, the “translation task” becomes relatively more
challenging due to their decoder-only architecture and autoregressive objective. However, ChatGLM2 6B does
produce some meaningful results, which may be owed to its blank-filling objective during pre-training, facilitating
fine-tuning in a Seq2Seq manner.

5.1.1 Impact of Window Length. For action tokenization with the VQ-VAE model, a sliding window is used
to accommodate action feature inputs of different lengths. To evaluate the impact of this variable window
length, we conducted an experiment using the T5 large model. This model was chosen due to its generally better
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Table 3. The ablation experiment on different window lengths applied during action tokenization, sampling rate, and action-
conditioned instruction tuning. Action. = the action type information as a condition added to the instruction. The relatively
higher performances in each comparison are marked in bold.

Model Window
length

Sampling
rate

Instruction Bleu@1 ↑ Bleu@4 ↑ Rouge 1 ↑ Rouge 2 ↑ Rouge L ↑ Cider ↑ BertScore ↑

T5 large 64 60Hz Tokens 65.78±1.95 46.20±2.43 64.50±1.81 50.12±2.44 62.11±1.97 1.58±0.09 59.22±2.38
128 60Hz Tokens 65.63±0.45 45.95±0.56 63.79±0.53 49.69±0.62 61.32±0.60 1.58±0.03 58.95±0.74
192 60Hz Tokens 66.20±0.68 46.99±1.27 64.96±0.64 50.95±1.21 62.45±0.78 1.62±0.07 60.44±1.23

T5 large 96 30Hz Tokens 65.79±1.12 46.20±1.69 64.20±1.30 50.15±1.77 61.99±1.52 1.59±0.06 59.42±1.28
T5 large 64 60Hz Action.+Tokens 68.97±0.76 50.06±1.10 67.82±0.99 54.23±1.34 65.75±1.06 1.74±0.04 62.78±0.78

128 60Hz Action.+Tokens 67.57±0.89 48.37±1.28 66.58±1.04 52.62±1.30 64.23±1.13 1.68±0.05 61.40±0.71
192 60Hz Action.+Tokens 68.59±1.16 49.92±1.46 67.74±1.20 53.93±1.58 65.42±1.25 1.73±0.06 62.67±1.60

T5 large 192 60Hz Action.+Tokens 60.25±0.89 47.18±1.17 60.04±1.06 49.51±1.22 59.44±1.00 1.71±0.11 55.50±1.02
(patterns only) 192 60Hz Tokens 59.33±1.40 45.46±2.02 58.90±1.52 47.79±1.92 58.18±1.53 1.63±0.1 55.43±1.39

performances with a smaller size when compared to other language models in the last subsection. The experiment
was conducted across five different cross-validation folds, and the results are presented as an average performance,
accompanied by a 95% confidence interval. The detailed results are reported in Table 3. A key finding from this
experiment is that the performance of language modeling does not appear to be sensitive to the length of the
sliding window employed during action tokenization. The Friedman test only reports significance for Rouge 1
(X2 = 9.042, 𝑝 = 0.011) and Rouge L (X2 = 7.042, 𝑝 = 0.03) scores of three methods in the third section. This
could be attributed to the fact that the tokens are extracted from complete action sequences, thereby potentially
neutralizing the impact of varying window lengths. In a secondary experiment, we downsampled the raw action
data from 60Hz to 30Hz and tested the model with a window length of 96 (equivalent to the 192 used for data
at 60Hz). The results showed a slight decrease in performance, suggesting that a higher data frequency might
enhance the sufficiency of action descriptions. However, this reduction in performance was not significant across
all the metrics (𝑝 > 0.05). Therefore, the decision to lower the frequency could be considered as a viable strategy
for reducing hardware costs and computational loads without substantially compromising model performance.

5.1.2 Impact of Action-Conditioned Instruction Tuning. As reported in Table 3, integrating the action type infor-
mation, denoted as 𝑦, into the instruction significantly enhances the language model’s description performance
(𝑝 < 0.05). This enhancement is two-fold. Firstly, the model becomes more proficient at describing the correct
type of action. Secondly, it exhibits an improved capacity to capture diverse movement patterns. This strategy is
particularly beneficial for systems that engage directly with users in a home environment. It serves as a reliability
measure for the language model’s output, especially considering the high accuracy achieved in classifying differ-
ent actions using an efficient classifier, as documented in Section 3.1.3. To further validate whether this strategy
indeed improves the model’s ability to capture movement patterns, we conducted an additional experiment. In
this experiment, the model was trained exclusively with labels that contained only pattern information. The
results, presented in the last two rows of Table 3, confirm our hypothesis. The enhancement brought about by the
integration of action type information is not confined to the accurate description of the action type alone. It also
extends to the precise depiction of movement patterns, demonstrating that the improvement is comprehensive
and not overshadowed by the correct identification of action types.

5.2 Insights from the User Study
The average results of the study per each group of the participants and physios are reported in Fig 9. For action
descriptions, both participants and physios evaluated the model outputs of most actions as comparable to or
even better than the ground truth. However, a subset of the actions was rated with a difference that exceeded the
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Fig. 9. Results of the user study on rating the outputs of our framework per each action type by clinical physios and normal
participants. With Wilcoxon signed-rank test on per-subject scores, significant results are marked with * for 𝛼 = 0.05 and **
for 𝛼 = 0.01. Prediction: The action description output by our framework; Label: The ground truth description generated by
GPT-4 given annotations from physios. The feedback without knowledge is generated directly by GPT-4 given the prompt
comprising user profile and action descriptions, without using the clinical knowledge we gathered from physios, vice versa.

significance level, indicating room for improvement. When describing the action of standing up from a chair
(Action #6), the model consistently generated outputs such as ‘this individual is rising from a chair, curving their
back forward’. It appears that distinguishing between normal patterns and improper back curvature is challenging
for the model due to their high similarities. In the case of the left-leg lift in a standing position (Action #15), the
model frequently predicted the users’ performances as unstable - a description criticized by physiotherapists
but accepted by participants, who often found this action difficult to execute while maintaining balance. More
interestingly, for the action of alternating toe touch (Action #19), while physiotherapists agreed with the model’s
prediction of the performances as ‘rounding their back excessively’, some participants believe they performed
the action correctly. In a clinic setting, physiotherapists would actively engage with the patient to determine if
such a discrepancy is due to a lack of capacity (i.e., the performance is the best the patient can do) or cognitive
bias (i.e., the patient is unaware of the harm in performing the action in that particular manner). Based on this
interaction, they would come to a consensus and decide whether to adjust the action’s difficulty or work on
improving the patient’s self-awareness.We believe such an interaction could also happen between our
framework and a user, by further enabling a multi-round dialogue between them that simulates such
an in-depth patient-physio interaction. This may open opportunities for personalized services and improve
the model’s efficacy via continual learning. We would like to leave this to its future development.
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For generated feedback, there was a noticeable divergence in the assessment provided by the physiotherapists
and the participants. The physiotherapists rated the retrieval-enhanced feedbacks, those generated with domain
knowledge, as significantly superior to the plain ones generated without such knowledge. This highlights the
importance of domain knowledge in improving the quality of generated feedback. By contrast, the participants
exhibited a more neutral stance, indicating no strong preference between the two types of feedback. This
discrepancy in ratings may due to the lack of professional knowledge in our participants. Consequently, they may
perceive the feedback provided by GPT-4, based on its common sense knowledge, as sufficiently satisfactory. For
the action of hand lift in a kneeling position (Action #12), we observed that the feedback generated by the model
without domain knowledge tended to be more fluent and natural. When domain knowledge was incorporated, the
feedback became somewhat rigid and unnatural. This could explain why participants found the former feedback
significantly more helpful.

In general, the participants and physios are all excited about the achievement made by our proposed framework.
During the user study, we also collect some opinions regarding potential improvements of our framework from
both participants and physios. Most of them underscored the need for further refinement of the model’s language
use and tone to enhance the acceptability and effectiveness of the conversation. For example, the model tends to
use the language such as ‘one is carefully conducting an action’, which is criticized by our physiotherapists due to
its ambiguity in action description. Such language might be interpreted in multiple ways. Some may perceive it as
indicating that the individual is performing the action slowly yet with balance, while others might interpret it as a
sign of the difficulties the person is encountering during the action. Furthermore, they point to the importance of
integrating visual demonstrations alongside textual instructions on how to execute certain actions. A physio also
highlights the need for the feedback module to be aligned with the user’s specific symptoms. This is particularly
important given the heterogeneity of chronic lower-back pain, which manifests in varied subtypes, such as the
differences in the localized affected regions.

5.3 Preliminary Evaluation towards Real-Life Deployment
Here, we provide an initial examination of the feasibility of implementing our framework for practical use in
home settings. The considerations primarily revolve around two aspects: the system’s inference time, spanning
from action data preprocessing to feedback generation, and the extra devices needed to run this framework.

5.3.1 Inference Time. From the collection of 3D pose data to the generation of action description and finally
the feedback, the complete inference pipeline is shown in Fig 10. Given our environment of RTX 4090 and a
CPU with 2.30 GHz frequency, the time spends on data preprocessing and action tokenization takes 1.06ms and
1.28ms per each frame in an action data sequence, respectively. While the actual operation of the algorithm will
use the multi-thread processing capacity of CPU and GPU, it takes nearly 2.34ms to process a single frame to
transform action data into tokens, equivalent to processing 427 frames per second. Given the action data in an
arbitrary duration, the length of action tokens range from 0 to 512 (with codebook size set to 512), while the

Fig. 10. The inference pipeline of the proposed framework, inference time is computed based on a machine with RTX 4090.
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processing time for action description stays almost the same. For T5 large, our machine needs 0.5s to provide
a complete description per action instance. Meanwhile, the generation of feedback using the GPT-4 API costs
approximately 3 seconds before returning responses. In short, given an action lasting 10 seconds at a streaming
frequency of 60Hz, our system requires 4.91s to generate feedback for the user in a real-time setting, using a
machine with RTX 4090. This duration is comparable to the time it takes a physio to make a suggestion in a
clinical setting, according to the physios. However, if instant feedback for each action instance is not imperative,
the longer latency associated with more commonly used computing devices may also be acceptable.

5.3.2 Visual Motion Capture as an Alternative to IMUs. In our experiment, in order to improve the comfort of
users when wearing the IMUs, we designed a thin, stretchable, and breathable suit with wireless sensors directly
attached. Although our participants generally found the suit comfortable, requiring users to have such equipment
for home use is costly. This cost is not only financial but also practical, due to drifting issues that cause pose flaws
over extended periods, typically beyond 10 minutes. This latter problem is impactful, which led to the exclusion
of data from 15 participants in our experiment. Therefore, it is beneficial to explore pose estimation methods
with alternative modalities, which could improve the realistic application of UbiPhysio.

Here, we run an extra experiment with the most recent technology of acquiring 3D human poses from a
video. Particularly, such a visual system may accelerate real-world deployment, eliminating the need for users to
purchase and wear extra devices. We use the plug-and-play PoseFormer V2 [72], applying it to videos collected at
65°from two randomly selected participants in the test fold. Given the common 17-join skeleton data returned by
this kind of method, we simulate the joint data of head end, both hands, and feet using their nearest joint and the
distance 𝑑 in-between, e.g., using the known coordinate of left forearm 𝐴, the coordinate of left hand 𝐵 that is
missing in the visual poses is simulated as (𝑥,𝑦, 𝑧) = (𝑥,𝑦, 𝑧) + ®𝐴𝐵

|𝐴𝐵 | × 𝑑 . The joint of neck 1 is acquired by taking
an average of the joints of neck and head. Such that, we transform the 17-joint visual pose data into the skeleton
used in this work, and put into the inference pipeline shown above. It is important to note that the model used in
this experiment was pre-trained solely on data collected from the IMUs. The preprocessing conducted on the
visual poses remains the same as those applied to IMU poses, including Z-normalization (with their respective
distributions), skeleton normalization, and alignment towards the Z+ direction.
The results, as are shown in Fig 11 with visualization examples, look promising and comparable to those

using data from IMUs. However, for movement patterns that describe the behavior of localized body parts, such
as waist hyperextension during shoulder wrap, the pose estimated with the visual system is restricted by its
fidelity. In addition to the common issue of occlusions when using a single camera, this is another problem with
visual systems: the shape change caused by subtle movements of the body (e.g., the waist in this case) may not
get properly tracked by the visual algorithm. As for other movements, vision-captured poses provide sufficient
information for our framework, leading to satisfactory results. We posit that by further refining the visual
system—for instance, integrating it with signals from a few IMUs, or using high-resolution RGB-D cameras—we
can enhance performance.

6 OPPORTUNITIES AND FUTURE DEVELOPMENT
During our study, we found the following opportunities that may guide the future development of UbiPhysio.

6.1 Enriching Feedback Generation via Real-time Physiological Signal Monitoring
In our future application scenarios involving daily functioning, fitness, and rehabilitation activities, the user’s
physiological signals, such as heart rate, breath rate, and heart rate variability (HRV), are essential measurements
complementary to the exterior human action features. These physiological signals could serve as direct indicators
of the user’s internal state, such as physical load and fatigue level. Therefore, combining physiological signals
with motion capture data could help the system establish more comprehensive user profiles, which, in turn, can
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Fig. 11. Visualizations of the results acquired on action data collected from a visual system and IMUs. The model’s outputs
are marked in blue for correct predictions and red for incorrect ones.

enhance the generation of appropriate intervention feedback. As an initial exploration, We re-examined the
auxiliary audio data collected from our main experiment sessions (with a wireless collar clip microphone) to
figure out whether behaviors indicating the physiological state (e.g., heavy breaths) can be detected. We manually
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labeled 3737 audio clips from 40 users with one of the three labels - “heavy breath, sigh, or moan”, “talking or
friction noise”, and “background or microphone noise” - by reviewing the corresponding video clips. The initial
results suggest that the signal-to-noise ratio (SNR) of breaths vs. more salient signals like talking or background
noise is not sufficient for robust recognition in our current hardware settings (e.g., breath typically has a lower
amplitude and is easily overwhelmed by friction noise and background noise). To improve the recognition
accuracy and robustness, one possible solution is to optimize the hardware form (e.g., using the inner microphone
from an ANC earbud [37]). In future research, we aim to incorporate alternative sensor channels, such as PPG,
RPPG, Wi-Fi, and mm wave radar, into our UbiPhysio framework to enhance the sensing capability for both
motional signals and physiological signals. In this context, how these signals jointly influence the intervention
and rehabilitation strategy would be an interesting research question for further investigation.

6.2 From One-Shot Feedback to the Interactive Functioning
The current framework provides action description for each action instance, but it has not yet been tested in
the context of continuous user interaction. For one thing, the system needs to segment the data stream into
meaningful action instances, or one should verify by putting continuous data into the pipeline the language
output is still useable. For another, in real-life scenarios, physios would typically respond to the performance of
the user consistently, providing not only feedback, but also encouragements and other forms of verbal support.
Particularly, in cases where there is a discrepancy in action descriptions, a multi-round dialogue with the user
would be conducted to discern their potential physical limitations and cognitive biases. We are optimistic that it
is close when an artificial intelligence agent can deliver such a comprehensive service to users. Starting from the
capacity presented by our proposed UbiPhysio framework, the next step on enabling these interactive functions,
e.g., to bring users in the loop, can open further opportunities. First, the interaction can provide a large amount of
data, which may either be used to fine-tune the model on unseen actions and patterns or providing personalized
services. Second, understanding action semantics is a new functional basis, like the role played by traditional
human activity recognition (HAR), and an interactive agent built on this may facilitate impactful and interesting
applications, e.g., monitoring the development of motion-affected disease [32, 53, 54], and serving as a babysitter
to prevent children from dangerous actions.

7 CONCLUSION
In this paper, we proposed UbiPhysio, a pioneering framework designed to offer fine-grained action descriptions,
in terms of the action type and movement patterns, and feedback for daily functioning, fitness, and rehabilitation
activities. We have assessed the framework with extensive experiments involving 104 diverse participants who
engaged in 25 types of everyday activities and exercises in a home-like setting. The quality of language output,
evaluated using standard benchmarks under various tuning strategies, showed promising results. Additionally, we
carried out a user study involving clinical physios and non-professional users, whose results further affirmed the
framework’s suitability and usability. We also explored the feasibility of deploying our framework in real-world
settings using vision-captured motion data, instead of relying on the data returned by many IMUs. With these
promising results, we believe that UbiPhysio can significantly enhance the effectiveness of remote fitness and
rehabilitation programs, improve user engagement, and ultimately contribute to better health outcomes.
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A IMPLEMENTATION DETAILS
In this Appendix section, we provide details about the data structure prepared for different language models
about the action description task, the hyperparameters used, and the computations of different metrics. Codes
would be made available at https://github.com/Mvrjustid/ubiphysio.

A.1 Preparing Data for Tuning Action Description Models
For language models that we evaluated for the action description task stated in Section 5.1, namely the T5 family
[50], ChatGLM2 6B [13, 68], and Llama 2 7B [56], the raw textual data we built using outputs of VQ-VAE ([Q])
and action recognition module ([𝑦]), and physios’ annotations are stated in Section 3.2 as:

• Task prompt T : {I want you to act as an action interpreter. Given the type of human action and tokens
representing the action, please generate a natural language description of the action.}

• Condition input: {The action you need to describe is as following, type: [𝑦], tokens: [Q].}
Such data was directly transformed to fit the training/tuning scheme of these language models. For ChatGLM2

6B, following the instruction provided in its official repository2 about customized fine-tuning with P-tuning
v2 [40], the data was transformed into the structure as shown in Algorithm 1. In particular, English was used
during data preparation for all the models. Since English contents are also part of the pre-training for ChatGLM2,
this practice shall not pose noticeable disadvantage on its fine-tuning given our data. For T5 small, base, large,
3B models, the same data structure as ChatGLM2 6B was used. For Llama 2 7B, we used the tuning framework
presented in this repository3, and our data was shaped as shown in Algorithm 2.

Algorithm 1: Data Structure for Fine-Tuning ChatGLM2 6B and T5 models
1 {

2 "instruction": "I want you to act as an action interpreter. Given the type of human
action and tokens representing the action, please generate a natural language
description of the action. The action you need to describe is as following, type:
[y], tokens:[Q].",

3 "response": "[GROUND TRUTH]"

4 }

A.2 Hyperparameters
For VQ-VAE, the size of the codebook B is 512 × 512, the downsampling rate is set to 𝑙 = 4. Based on empirical
evidence, 𝛽 is set to 1.0 for the commitment loss, and 𝛼 is set to 0.5 for the regularization loss using biomechanical
features. Typical VQ-VAE training techniques such as codebook reset and exponential moving average (EMA)
[52] are used, where the exponential moving constant is set as 𝜆 = 0.99. During training, the batch size is set
to 128, the default AdamW optimizer [42] is used for optimization, the initial learning rate is set to 2e-4 and is
decreased by multiplying 0.1 after the first 100K steps, and the total number of steps is 150K. A non-overlapped
sliding window is applied to the action feature inputs of different lengths. The window length is set to 64 for
2ChatGLM2 6B with P-tuning, https://github.com/THUDM/ChatGLM2-6B/tree/main/ptuning
3LLaMA-Factory: https://github.com/hiyouga/LLaMA-Factory/tree/main
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Algorithm 2: Data Structure for Fine-Tuning Llama 2 7B
1 "columns": {

2 "prompt": "I want you to act as an action interpreter. Given the type of human action
and tokens representing the action, please generate a natural language description of
the action.",

3 "query": "The action you need to describe is as following, type: [y], tokens:[Q].",

4 "response": "[GROUND TRUTH]"

5 }

most experiments, although we also conducted an ablation experiment on this hyperparameter, which is reported
in the experimental section.

For all the language models, AdamW [42] is used as the optimizer, and the pre-trained weights are all loaded
before fine-tuning. For T5 models, the initial learning rate is set to 1e-4, and the batch size is 16. Particularly,
T5 3B is fine-tuned using LoRA[29], with 𝛼𝑙𝑜𝑟𝑎 = 16, 𝑑𝑟𝑜𝑝𝑜𝑢𝑡𝑙𝑜𝑟𝑎 = 0.1, 𝑟𝑎𝑛𝑘𝑙𝑜𝑟𝑎 = 64. For Llama 2 7B, the initial
learning rate is set to 3e-3 with a cosine learning rate scheduler, and the batch size is 64, 8-bit quantization with
single precision is used, with the input length set to 512. LoRA is also used for fine-tuning Llama 2 7B, with
𝛼𝑙𝑜𝑟𝑎 = 16, 𝑑𝑟𝑜𝑝𝑜𝑢𝑡𝑙𝑜𝑟𝑎 = 0.1, 𝑟𝑎𝑛𝑘𝑙𝑜𝑟𝑎 = 64. For ChatGLM2 6B, the initial learning rate is set to 5e-3, and the
batch size is 16, the single precision is used without quantization. Here, P-tuning v2 [40] is used for its fine-tuning,
with soft prompt length set to 128, input length set to 512. The architecture of the two convolutional backbones
used in VQ-VAE and action recognition module are reported in the following tables, respectively.

A.3 Metrics Computation
As mentioned in Section 4.3, benchmark metrics like Bleu [46], Rouge [39], Cider [58], and BertScore [70] are
adopted to measure the quality of action descriptions. Details of the calculation are reported as follows:

• Bleu score was calculated with the python library NLTK (nltk.translate.bleu_score.sentence_bleu),
while the geometric sequence smoothing from National Institute of Standards and Technology (NIST) that is
provided in this same package (nltk.translate.bleu_score.SmoothingFunction.method3) was used as the
smoothing function.

• ROUGE score was calculated with python library Rouge. No other additional parameters were set.
• CIDEr score was calculated with python library Pycocoevalcap (pycocoevalcap.cider). No other additional

parameters were set.
• BertScore was calculated with official python library Bert-Score, with the following arguments: lang=’en’,

verbose=True, rescale_with_baseline=True, idf=True. The default model for English, roberta-large,
was employed to compute the scores we have presented.
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Table 4. The architecture of the convolutional backbone used in VQ-VAE. The exact input dimension of 315 was used for the
input of biomechanical features, which was simply switched to 287 for action features adopted in previous works.

Components Architecture

Encoder

(0): Conv1d(315, 512, kernel_size=(3,), stride=(1,), padding=(1,))
(1): ReLU()
(2): 2 × Sequential(
(0): Conv1d(512, 512, kernel_size=(4,), stride=(2,), padding=(1,))
(1): Resnet1D(

(model): Sequential(
(0): 3 × ResConv1DBlock(
(norm1): Identity()
(norm2): Identity()
(activation1): ReLU()
(activation2): ReLU()
(conv1): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,))
(conv2): Conv1d(512, 512, kernel_size=(1,), stride=(1,))))))

(4): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(1,))
Codebook nn.Parameter((512, 512), requires_grad=False)

Decoder

(0): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(1,))
(1): ReLU()
(2): 2 × Sequential(
(0): Resnet1D(

(0): 3 × ResConv1DBlock(
(norm1): Identity()
(norm2): Identity()
(activation1): ReLU()
(activation2): ReLU()
(conv1): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(9,), dilation=(9,))
(conv2): Conv1d(512, 512, kernel_size=(1,), stride=(1,))))

(1): Upsample(scale_factor=2.0, mode=’nearest’)
(2): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(1,)))

(4): Conv1d(512, 512, kernel_size=(3,), stride=(1,), padding=(1,))
(5): ReLU()
(6): Conv1d(512, 315, kernel_size=(3,), stride=(1,), padding=(1,))

Table 5. The of the convolutional backbone used in the action recognition module.

Components Architecture

Action Type Classifier

(0): Conv1d(315, 64, kernel_size=(7,), stride=(2,), padding=(3,))
(1): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU()
(3): MaxPool1d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(4): 2 × Sequential(

(0): 2 × ResidualBlock(
(1): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(1,))
(2): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(3): ReLU()
(4): Conv1d(64, 64, kernel_size=(3,), stride=(1,), padding=(1,))
(5): BatchNorm1d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(6): Dropout(p=0.5, inplace=False)
(7): Identity()))

(5): AdaptiveAvgPool1d(output_size=1)
(6): Linear(in_features=128, out_features=25, bias=True)
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