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Abstract

Chronic pain (CP) rehabilitation extends beyond physiotherapist-directed clinical ses-

sions and primarily functions in people’s everyday lives. Unfortunately, self-directed

rehabilitation is difficult because patients need to deal with both their pain and the

mental barriers that pain imposes on routine functional activities. Physiotherapists

adjust patients’ exercise plans and advice in clinical sessions based on the amount

of protective behavior (i.e., a sign of anxiety about movement) displayed by the

patient. The goal of such modifications is to assist patients in overcoming their fears

and maintaining physical functioning. Unfortunately, physiotherapists’ support is

absent during self-directed rehabilitation or also called self-management that people

conduct in their daily life.

To be effective, technology for chronic-pain self-management should be able

to detect protective behavior to facilitate personalized support. Thereon, this thesis

addresses the key challenges of ubiquitous automatic protective behavior detection

(PBD). Our investigation takes advantage of an available dataset (EmoPain) con-

taining movement and muscle activity data of healthy people and people with CP

engaged in typical everyday activities. To begin, we examine the data augmentation

methods and segmentation parameters using various vanilla neural networks in order

to enable activity-independent PBD within pre-segmented activity instances. Second,

by incorporating temporal and bodily attention mechanisms, we improve PBD per-

formance and support theoretical/clinical understanding of protective behavior that

the attention of a person with CP shifts between body parts perceived as risky during

feared movements. Third, we use human activity recognition (HAR) to improve

continuous PBD in data of various activity types. The approaches proposed above
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are validated against the ground truth established by majority voting from expert

annotators. Unfortunately, using such majority-voted ground truth causes informa-

tion loss, whereas direct learning from all annotators is vulnerable to noise from

disagreements. As the final study, we improve the learning from multiple annotators

by leveraging the agreement information for regularization.



Impact Statement

The advancement of artificial intelligence creates new opportunities in the way

healthcare can be offered to everyone. In particular, efforts have been undertaken

in recent years to enable the provision of ubiquitous and tailored medical cares in

a variety of scenarios. Of particular interest to this thesis is the advance in using

wearable devices (e.g., accelerometers, inertial measurement units, pressure sensors,

and smartphones) to support remote physiotherapy for people with chronic diseases

[1, 2], outpatient health deterioration monitoring [3], depression monitoring [4], and

movement assessment for perinatal stroke screening [5]. The overarching goal of

this growing body of work is to harness the power of ubiquitous technology for

healthcare, therefore extending medical assistance to diverse out-of-hospital contexts,

offering personalized support and therapy. Bearing this objective, this thesis dives

into the first step for intelligent chronic pain (CP) rehabilitation, namely automatic

protective behavior detection (PBD) across various functional activities.

Rehabilitation for people with CP is a significant societal challenge that affects

30.7% of adults in the United States [6] and 19% of the population in Europe [7].

Furthermore, people with CP may come with various conditions, e.g., sports injury,

post-stroke recovery, and cancer. Thus, a technology able to support the rehabilitation

beyond the clinic can alleviate the burden on public healthcare system. Ubiquitous

technology, with the capacity of functioning anywhere and anytime, is of great

potential for such end. The role of ubiquitous technology here is to first capture

people’s movement with wearable devices, then automatically detect protective

movement behavior, and finally respond with feedback, suggestion, and intervention

that simulates the role of a physiotherapist.
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In this thesis, we propose a series of studies inspired by the challenges that

may arise in the real-world deployment of this technology, by using data collected

from people with CP. Therein, we contribute not only to CP rehabilitation, but also

to a larger domain dealing with movement data and healthcare. In terms of data

pre-processing for using deep learning, the insights gained from our study provide

a set of criteria for selecting possible ideal parameters for future datasets of PBD

and possibly other emotional behavior detection tasks. Our attention-based approach

produce competitive results in the relevant task of activity recognition, and is used to

develop sonification software to assist physiotherapists in movement interpretation.

Our proposed model integrating activity recognition and PBD demonstrates the sig-

nificance of context recognition for emotional behavior detection, and the possibility

of leveraging context recognition for healthcare personalization.

Based on the PBD capacity demonstrated in this thesis, we may inspire the hu-

man computer interaction community to propose novel apps or interaction paradigm

like sonification to enrich the user-machine interaction for CP rehabilitation. In

addition, our application of ubiquitous technology for CP rehabilitation may raise

the interest of industry in developing more comfortable and affordable movement

sensors or garments.



Acknowledgements

I would like to thank my fantastic supervisors, Nadia Bianchi-Berthouze (University

College London), Nicholas D. Lane (University of Cambridge), and Amanda C. De

C. Williams (University College London), who spent days and years on guiding me

to pursue real research questions, write wonderful papers, and provided countless

help during my career development. Your devotion to science, kindness for students,

and thoughtful guidance for me are inspiring ever since the first day we met.

I thank University College London for awarding me the prestigious scholarship to aid

my PhD, with which I was able to enjoy very much the life and study in this lovely

foreign country without many worries. I wish my past work meet the expectation,

and will continue contributing to the wellbeing of mankind as a PhD from UCL.

I am lucky to receive the guidance from my undergraduate mentor, Tong Chen

(Southwest University) in China, who used his expertise and wisdom to shape my

road to research. I also thank Hongying Meng (Brunel University London) for his

rich advice and recommendation of me to Nadia that made my PhD application a

great success. I am grateful to have received plentiful supports from Guangyuan Liu,

Yan Zhang, and Min Peng in the past years.

I am more than happy to have worked with numerous brilliant people in the past

years. I enjoyed very much the collaboration and discussion with Akhil Mathur,

Temitayo A. Olugbade, Tao Bi, Amid Ayobi, Nicholas Gold, Albert Higgins, Roxana

Ramirez Herrera, and Ahmed Alqaraawi at UCL, and Siyang Song, Joy Egede, Yuan

Gao, Chenyou Fan, Junjie Hu, Su-Jing Wang, Xinwen Xu, Lingfeng Xu, Xintao Qiu

at places across the world.



Acknowledgements 8

I dedicate this thesis to my girlfriend Erqiu, my parents, and grandparents, who have

been accompanying me ever since the beginning. I am more than happy to have you

by my side.

At this moment, my thought could not help but going back to the night I first met my

supervisors in the interview hosted when I was in Beijing. This journey is wonderful

in my life.



Contents

1 Introduction 23

1.1 Research Questions, Challenges, Contributions . . . . . . . . . . . 25

1.1.1 Continuous PBD in Pre-Segmented Activity Instances . . . 25

1.1.2 Capturing Variety in Protective Behavior Detection . . . . . 27

1.1.3 Continuous PBD in Sequence of Various Activities . . . . . 28

1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.3 Research Publications . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.3.1 Publications from this Thesis . . . . . . . . . . . . . . . . . 31

1.3.2 Publications from Collaborations beyond this Thesis . . . . 32

1.3.3 Hosting Workshop and Challenge to Boost PBD Research . 33

2 Background 34

2.1 Protective Behavior in Chronic Pain . . . . . . . . . . . . . . . . . 34

2.1.1 Protective Behavior in Chronic Pain Literature . . . . . . . 35

2.1.2 Automatic Analysis of Pain Behavior . . . . . . . . . . . . 37

2.2 Deep Learning for Body Movement Analysis . . . . . . . . . . . . 42

2.2.1 Deep Learning for Human Activity Recognition . . . . . . . 42

2.2.2 Deep Learning for Abnormal Behavior Detection . . . . . . 46

2.3 Advanced Methods for Movement-based Tasks . . . . . . . . . . . 50

2.3.1 Wearable HAR with Attention Mechanism . . . . . . . . . 50

2.3.2 Skeleton-based HAR with GCN . . . . . . . . . . . . . . . 52

2.4 Addressing Challenges in Real-Life Scenarios . . . . . . . . . . . . 54

2.4.1 Optimizing the Sensor Set . . . . . . . . . . . . . . . . . . 54



Contents 10

2.4.2 Improving the Task with Context Recognition . . . . . . . . 58

2.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . 60

3 Methodology 64

3.1 The EmoPain Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1.1 Building Blocks for Complex Functional Activities . . . . . 65

3.1.2 Movement and Muscle Activity Data . . . . . . . . . . . . 66

3.1.3 Low-Level Feature Computation . . . . . . . . . . . . . . . 69

3.1.4 Data Annotation and Ground Truth . . . . . . . . . . . . . 70

3.2 Vanilla Neural Networks . . . . . . . . . . . . . . . . . . . . . . . 71

3.2.1 Stacked-LSTM and Dual-Stream LSTM Networks . . . . . 72

3.2.2 Relevant Vanilla Models . . . . . . . . . . . . . . . . . . . 74

3.3 Validation Methods and Metrics . . . . . . . . . . . . . . . . . . . 75

4 Exploring Vanilla Models and Data Preprocessing Methods 78

4.1 Data Preprocessing Methods . . . . . . . . . . . . . . . . . . . . . 79

4.1.1 Data Sequence Segmentation with Sliding Window . . . . . 80

4.1.2 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . 81

4.2 Comparison of Vanilla Neural Networks . . . . . . . . . . . . . . . 82

4.2.1 Implementation Details . . . . . . . . . . . . . . . . . . . . 82

4.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.3 Evaluation of Data Preprocessing Methods . . . . . . . . . . . . . . 86

4.3.1 Comparison of Augmentation Methods . . . . . . . . . . . 87

4.3.2 Comparison of Padding Methods . . . . . . . . . . . . . . . 88

4.3.3 Analysis on Sliding-Window Length . . . . . . . . . . . . . 90

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Capturing Variety with Attention to Improve Performance 98

5.1 The Body Attention Network . . . . . . . . . . . . . . . . . . . . . 100

5.1.1 Temporal and Bodily Attention Learning . . . . . . . . . . 101

5.2 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . 103



Contents 11

5.2.2 Implementation Details . . . . . . . . . . . . . . . . . . . . 104

5.3 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3.1 Analysis on Attention Weights . . . . . . . . . . . . . . . . 107

5.3.2 Extra Evaluation of BANet on HAR Datasets . . . . . . . . 112

5.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6 Improving Protective Behavior Detection in Continuous Data 116

6.1 Challenges in Continuous Data . . . . . . . . . . . . . . . . . . . . 118

6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2.1 The GC-LSTM Network for HAR and PBD Modules . . . . 121

6.2.2 Hierarchical Connection of HAR and PBD Modules . . . . 125

6.2.3 Addressing Class Imbalances with CFCC Loss . . . . . . . 126

6.3 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.3.1 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . 129

6.3.2 Validation Method and Metrics . . . . . . . . . . . . . . . . 129

6.3.3 Model Implementations . . . . . . . . . . . . . . . . . . . 130

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.4.1 Contribution of Graph Representation to PBD . . . . . . . . 131

6.4.2 Contribution of CFCC Loss and HAR . . . . . . . . . . . . 133

6.4.3 Comparison of Training Strategies . . . . . . . . . . . . . . 136

6.4.4 Simulating Fewer IMUs . . . . . . . . . . . . . . . . . . . 139

6.5 Error Analysis with Visualization . . . . . . . . . . . . . . . . . . . 141

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7 Conclusion and Discussion 145

7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . 145

7.2 Future Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.2.1 In-the-Wild Informed Clinical Rehabilitation . . . . . . . . 148

7.2.2 Patient-Oriented Ubiquitous Self-Management . . . . . . . 148

7.2.3 From Chronic Pain to Next-Stage Movement Sensing . . . . 149

7.3 Limitations and Future Work . . . . . . . . . . . . . . . . . . . . . 150



Contents 12

7.3.1 The Focus on a Coarse Language of Protective Behavior . . 150

7.3.2 Lacking Multi-Modality of Protective Behavior . . . . . . . 151

7.3.3 The Lack of Data . . . . . . . . . . . . . . . . . . . . . . . 152

7.3.4 The Dependence on Manual Annotation . . . . . . . . . . . 153

7.3.5 The Use of a Large IMUs Network . . . . . . . . . . . . . 153

Bibliography 155

Appendices 180

A Learning from Multiple Annotators without Objective Ground Truth 180

A.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

A.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

A.2.1 Annotator Modeling . . . . . . . . . . . . . . . . . . . . . 183

A.2.2 Uncertainty Modeling . . . . . . . . . . . . . . . . . . . . 184

A.2.3 Model Evaluation without Ground Truth . . . . . . . . . . . 185

A.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

A.3.1 Learning Agreement with Uncertainty Modeling . . . . . . 187

A.3.2 Regularizing the Classifier with Agreement Information . . 189

A.3.3 Alleviating Imbalances when Using Logarithmic Loss . . . 191

A.4 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

A.4.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

A.4.2 Implementation Details . . . . . . . . . . . . . . . . . . . . 194

A.4.3 Agreement Computation . . . . . . . . . . . . . . . . . . . 195

A.4.4 Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

A.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

A.5.1 Logarithmic Loss with Balancing Methods vs. WKL Loss . 196

A.5.2 The Impact of Agreement Learning . . . . . . . . . . . . . 197

A.5.3 Comparing with the Annotators . . . . . . . . . . . . . . . 197

A.5.4 The Impact of Agreement Regression Loss . . . . . . . . . 198

A.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199



List of Figures

1.1 Chapter 4 studies different data preprocessing methods for raw data

sequences of protective behavior across different activity types (data

segmentation and augmentation), using various vanilla neural net-

works on data collected from real people with CP. The aim is to

identify methods for activity-independent tracking. This work is

published in ACM HEALTH and ISWC/Ubicomp’19. [8, 9]. . . . . 26

1.2 Chapter 5 proposes a novel model named BANet that combines

the learning of temporal and bodily attention to improve the PBD

performance by capturing the variety among people with CP in

performing protective behavior. Informed by effects of protective

behavior on movement, the analyses of the temporal and bodily

attention scores reveal the larger variety of movement strategies and

the continuous shift in attention paid to the feared body parts of

people with CP. This work is published in a workshop at ACII’19 [10]. 27

1.3 Chapter 6 investigates how to enable PBD across continuous data

comprising different activity types without pre-segmentation, by

leveraging activity recognition for contextualization. The backbone

of the proposed model is a graph convolutional network, and the

loss function is designed to counter class imbalances during training.

This work is published in IMWUT/Ubicomp’21 [11]. . . . . . . . . 29



List of Figures 14

2.1 Image samples from the EmoPain dataset of a participant doing

reaching forward. The sensors used are Inertial Measurement Units

(IMUs) and surface Electromyography (sEMG) sensors. (Taken

from [12]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.2 Earlier studies proposed for HAR using deep learning treats the

movement data collected from different positions as a data matrix,

with vanilla neural networks like CNN, LSTM applied directly on it.

(partially taken from [13, 14]) . . . . . . . . . . . . . . . . . . . . 44

2.3 The trend we saw in recent models (a)(b)(c) proposed for sensor-

based HAR is to use attention mechanism to capture the informative

local movement per sensor position and the temporal saliency. Par-

tially taken from [15, 16, 17]. . . . . . . . . . . . . . . . . . . . . . 51

2.4 We review the literature toward solving two challenges that could

exist in real-life scenarios. The first is the need for a compact sensor

set and how to approach it. The second is, given more realistic and

continuous data, how to improve the performance of a detection task

with context recognition. . . . . . . . . . . . . . . . . . . . . . . . 55

2.5 The sensor setup and activities used to analyze the impact of sensor

placements on model performance in a study about wearable HAR.

(taken from [18]) . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.6 The more compact sensor set designed for pain-related behavior

analysis seen in [19]: (a) The IMU sensor, SparkFun MPU9150. (b)

The sEMG sensor, BITalino. (c) The placements of sensors on a

participant, where the red dots are IMUs and blue dots are sEMG

sensors. (taken from [19]) . . . . . . . . . . . . . . . . . . . . . . . 57

3.1 Avatar examples made from movement data in the EmoPain dataset

of a healthy and a CP participant performing the five functional

activities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



List of Figures 15

3.2 Illustrations of a) the placement of 18 IMUs, b) the calculation of

26 sets of 3D joint coordinates, c) the skeleton graph showing the

connection of 26 anatomical joints, where each node represents a

human body joint, and (d) the placements of the 4 sEMG sensors

on trapezius (3, 4) and L4/5 lumbar paraspinal (1, 2) muscles, taken

from [12]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Avatars representing the temporal sequences of movement and

sEMG data of healthy and CP participants during reach-forward

(left) and stand-to-sit and sit-to-stand (right) in the EmoPain dataset.

The sEMG signal plotted for each avatar sequence is the average

upper envelope of rectified sEMG data collected from two sensors

on the lower back. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 The feature matrix at a single timestep t. A1 to A13 are the inner

angles, E1 to E13 are the energies and sEMG1 to sEMG4 are the

rectified sEMG data. . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.5 Description of the 13 joint angles. Data collected from the partici-

pants’ feet are noisy and hence not used in this thesis. . . . . . . . . 70

3.6 The visualization of the binary coding for protective behavior by 4

expert raters. Different types of protective behavior are treated as

the same unique class. . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.7 The typical recurrent neural network structure using LSTM unit. . . 72

3.8 The Dual-stream LSTM network, where movement and sEMG data

are processed separately. Each LSTM block is stacked-LSTM that

without a classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1 Illustration of the different references of data at various scales. . . . 79

4.2 The sliding-window segmentation applied in the first two studies is

conducted separately for each activity type, where different padding

methods are considered for each window sliding outside an activity

instance. t is the starting timestep of a window, S is the sliding step,

W is the window length. . . . . . . . . . . . . . . . . . . . . . . . 80



List of Figures 16

4.3 Results of the search on the hyperparameters (number of layers and

number of hidden units in each layer) of stacked-LSTM. . . . . . . 83

4.4 A confusion matrix of the performance of stacked-LSTM in LOSO

cross validation. NP=non-protective; P=protective. . . . . . . . . . 86

4.5 (Left): the duration distribution of activity instances in the EmoPain

dataset, where 60 samples=1 second. (Right): the impact of sliding-

window length on PBD performance per activity type. . . . . . . . . 91

4.6 Impact of sliding-window length on different subjects. 1-12: healthy

participants, 13-30: CP participants. . . . . . . . . . . . . . . . . . 94

5.1 (a) Overview of the BANet, where each body part is described by

the joint angle plus energy features. (b) The 13 joint angles that used

as the input for BANet, where data collected from the participants’

feet are noisy and hence not used in this work. . . . . . . . . . . . . 100

5.2 The temporal attention block (above) and the bodily attention block

(below) that we used in the proposed BANet. . . . . . . . . . . . . 102

5.3 Boxplots for the distribution of bodily attention weights computed

by BANet for each testing data of a joint angle, organized by activity

type. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 Heatmaps of the temporal attention weights computed in BANet for

testing instances of healthy subject number 16 and patient number

14 with their respective movement data (stick figures). . . . . . . . . 110

5.5 Heatmaps of the temporal attention weights computed in BANet

for each participant, organized by activity type (zoom in for better

reading). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1 An example of the full data sequence from a CP participant, com-

prising AOIs and transitions. Lines are red, green, and blue for the

x, y, and z coordinates data, respectively. Protective behavior labels

(majority-voted) are shown below the sequence. . . . . . . . . . . . 119



List of Figures 17

6.2 The proportion of protective behavior in each activity type across all

the participants with CP. . . . . . . . . . . . . . . . . . . . . . . . 119

6.3 The average distribution of (a) activity classes in the entire dataset

and (a) protective behavior across all the CP participants. . . . . . . 120

6.4 The proposed hierarchical HAR-PBD architecture, comprising the

human activity recognition (HAR) module and protective behavior

detection (PBD) module. By default, using the same data input,

the HAR module is pre-trained with activity labels and frozen with

weights loaded during training of the PBD module. . . . . . . . . . 121

6.5 The built graph input at a single timestep, where each node repre-

sents a human body joint. The blue contour marks the neighbor set

(receptive field) of the centered node in green. . . . . . . . . . . . . 123

6.6 Input structures of (a) the original BANet, and (b) the adapted BANet

for 22 pairs of 3D joint coordinates. . . . . . . . . . . . . . . . . . 131

6.7 PR curves of different representation learning methods. . . . . . . . 132

6.8 Confusion matrices of a) HAR GC-LSTM and b) HAR GC-LSTM

with CFCC loss, where the bias toward the majority class of transi-

tion is balanced. OLS=one-leg-stand, RF=reach-forward, SITS=sit-

to-stand, STSI=stand-to-sit, and BD=bend-down. The improvement

on the less-represented class is obvious for the four classes in the

middle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6.9 Confusion matrices for PBD methods in the ablation study. NP=

non-protective, P=protective. The improvement on the protective

class is obvious. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.10 PR curves of different PBD methods in the ablation study. . . . . . 136

6.11 PR curves of the hierarchical architecture under different training

strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.12 Graph structures of the four sensor sets. The blue contour marks the

neighbor set of each centered node that colored in green. . . . . . . 139



List of Figures 18

6.13 HAR and PBD results of the hierarchical HAR-PBD architecture

with CFCC loss using input of different sensor sets. . . . . . . . . . 140

6.14 PR curves of the hierarchical architecture with CFCC loss using

input of different sensor sets. . . . . . . . . . . . . . . . . . . . . . 141

6.15 An example of the ground truth and results of HAR and PBD mod-

ules for data of a CP participant. The upper diagram is showing

the ground truth of activity class and the recognition result by HAR

GC-LSTM with CFCC loss. At the lower diagram, the first row

is presenting the ground truth for PBD. ‘M1’ to ‘M4’ are respec-

tively the detection result of i) PBD GC-LSTM; ii) PBD GC-LSTM

with CFCC loss; iii) hierarchical HAR-PBD architecture, and iv)

hierarchical HAR-PBD architecture with CFCC loss. . . . . . . . . 142

A.1 Unlike the methods that learn from the majority-voted ground truth

or all the annotations directly, the proposed model regularizes the

classifier that fits with all the annotators with the estimated agreement

information between annotators. . . . . . . . . . . . . . . . . . . . 181

A.2 An overview of the proposed agreement learning model, which com-

prises i) (above) the classifier stream that fits with all the annotators;

and ii) (below) the agreement learning stream that learns to estimate

the agreement between annotators and leverage such information to

regularize the classifier. . . . . . . . . . . . . . . . . . . . . . . . . 187

A.3 The learning of the agreement between annotators is modeled with

a general agreement distribution using agreement regression loss

(above), with the X axis of the distribution being the agreement

levels and the Y axis being the respective probabilities. The learning

can also be implemented as a linear regression task with RMSE

(below). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188



List of Figures 19

A.4 The property of the regularization function. X and Y axes are the

agreement indicator ỹi and regularized probability p̃θ (xi), respec-

tively. p̃θ (xi) is regularized to the class, for which the ỹi is high,

with the scale controlled by λ . . . . . . . . . . . . . . . . . . . . . 190



List of Tables

2.1 The Five Categories and Definitions of Protective Behavior used in

this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 Summary of past works before this thesis on pain-related recognition

tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Summary of past works exploring vanilla deep learning methods for

wearable human activity recognition and abnormal behavior detection. 43

4.1 Comparison Results using the Leave-Some-Subjects-Out (LSSO),

Leave-One-Subject-Out (LOSO) and Leave-Some-Instances-Out

(LSIO) cross-validation Methods. Fm=Macro F1 score, Re=Recall,

Pre=Precision. 95% confidence intervals are added to the LOSO

results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.2 PBD performances (Mac.F1) and p-values of the post-hoc Wilcoxon

Signed Rank test with Bonferroni corrections using the LOSO re-

sults under different Data augmentation methods. 95% confidence

intervals are added to the LOSO results. . . . . . . . . . . . . . . . 88

4.3 PBD performances (Mac.F1) and p-values of the post-hoc Wilcoxon

Signed Rank test with Bonferroni corrections using the LOSO results

under three padding methods. 95% confidence intervals are added to

the LOSO results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 PBD performances (Mac.F1) under three sliding-window lengths

across all activities. 95% confidence intervals are added to the LOSO

results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



List of Tables 21

5.1 Results (Mac.F1 with 95% confidence intervals) and p-values of the

post-hoc Wilcoxon Signed Rank test with Bonferroni corrections

using LOSO results of the comparison experiment. The method of

the best macro f1 score is in bold. . . . . . . . . . . . . . . . . . . 106

5.2 The confusion matrices for BANet and stacked-LSTM. . . . . . . . 106

5.3 Results of the independent t-test for comparing the size of boxplots

between the healthy and CP participants (showing protective or

non-protective behaviors). DF denotes the degree of freedom. . . . . 109

5.4 Results of the independent t-test for comparing the entropy of tem-

poral attention weights between the healthy and CP participants

(showing protective or non-protective behaviors). DF denotes the

degree of freedom. . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5 The performances (macro F1 scores with 95% confidence intervals)

of BANet and previous state-of-the-art methods reported in [20],

using several wearable HAR and abnormal behavior detection datasets.113

5.6 The results of our BANet and other compared methods on Skoda

dataset for human activity recognition. . . . . . . . . . . . . . . . . 114

6.1 PBD results with 95% confidence intervals of different representation

learning methods. The best method is marked in bold. . . . . . . . . 132

6.2 HAR results with 95% confidence intervals of the ablation study.

The best method is marked in bold. . . . . . . . . . . . . . . . . . . 133

6.3 PBD results with 95% confidence intervals of the ablation study. . . 135

6.4 HAR and PBD results with 95% confidence intervals for different

training strategies of the Hierarchical HAR-PBD architecture, the

best method is marked in bold. . . . . . . . . . . . . . . . . . . . . 137



List of Tables 22

A.1 The ablation experiment on the EmoPain and MURA datasets.

Majority-voting refers to the method using the majority-voted ground

truth for training. CE and WKL refer to the logarithmic and weighted

kappa loss functions used in the classifier stream, respectively. Lin-

ear and Distributional refer to the agreement learning stream with

linear regression and general agreement distribution, respectively.

The best performance in each model/annotator set is marked in bold

for each dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

A.2 The experiment on the EmoPain dataset for analyzing the impact of

Agreement Regression (AR) loss on agreement learning. The best

performance in each agreement learning type is marked in bold. . . 199

A.3 The experiment on the MURA dataset for analyzing the impact of

Agreement Regression (AR) loss on agreement learning. The best

performance in each agreement learning type is marked in bold. . . 199



Chapter 1

Introduction

Chronic pain (CP) is a prevalent condition in 30.7% of adults in the United States

[6] and 19% of the population in Europe [7]. People with chronic musculoskeletal

pain (a prevalent type of CP) exhibit protective behavior (e.g., guarding, stiffness,

hesitation, use of support, and jerky motion) during physical activity [21], providing

important information not only about their physical condition, but more specifically

about their anxiety of movement, and ability to self-manage their condition [22,

23]. Unfortunately, this fear of movement impel many people with CP to avoid

or minimize functional activity or the use of painful body parts, leading to further

physical deterioration.

In clinical settings, physiotherapists respond to their patients’ protective behav-

ior with education/information, feedback, and exercise plan adaptation, with the aim

to help them overcome fear [24]. This tailored support is important to reduce fears

of injury from movement, incrementally build patients’ self-efficacy, and maintain

their engagement in physical activity [25, 26]. However, such support is expensive

and only available to few people with CP. Furthermore, the behavior displayed in the

clinic may not provide a clear understanding of the psychological barriers that pa-

tients meet in their daily life. As such, the support provided may not easily translate

to self-management outside the hospital [27]. A particular issue in self-management

is the limited awareness people with CP have of their way of responding to their

anxiety toward movement [26]. Such lack of awareness makes it difficult for people

with CP to apply strategies learned in the clinic to overcome their anxiety [24]. As
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a result, people often disengage, thereby losing valued activities including family,

work, and social involvement [23].

Ubiquitous sensing and computing technology offer new opportunities to pro-

vide such support to people with CP in their daily life. Patients describe technology

capable of detecting protective behavior as a ‘second pair of eyes’, increasing their

awareness and helping application of pain management strategies learned in the

clinic [27]. In [25], patients and physiotherapists discussed how such technology

could help better control activity pacing and breathing when protective behavior is

detected. These are important for disrupting unhelpful movement habits and establish

new and beneficial movement strategies. The technology may also, e.g., replicate

physiotherapists’ advice on chair height if the patient lacks confidence in sitting

down or standing up, and learn to help build confidence of the patient by gradually

decreasing the height of the chair. These studies also show that awareness of habitual

protective behavior can help reduce it (e.g., reminding the person to bend the trunk

as standing up from a chair), which is critical to facilitate functioning. Aside from

providing personalized feedback, technology capable of sensing protective behavior

can be adopted to evaluate clinical interventions’ effects on people’s daily life [28].

This thesis targets the first step in building a ubiquitous technology to support

people with CP in their everyday management, which is to enable continuous protec-

tive behavior detection (PBD) during their various functional activities. This thesis

investigates and proposes novel learning models and impactful data pre-processing

approaches to enable continuous PBD across a set of basic activities (e.g., stretching

forward) that are feared by people with CP and that form the building blocks of

a variety of more complex functional activities commonly conducted in everyday

life (e.g., one needs to stretch forward to clean the trunk of a car). To validate our

approaches, we make use of an existing multimodal EmoPain dataset [12] gathered

from people with CP and healthy people engaged in such basic activities. In this

research, we also aim to derive and contribute to fundamental research questions that

shall benefit a broader research area, with extra evaluation on relevant movement

and medical datasets.
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1.1 Research Questions, Challenges, Contributions
In this section, we plot the research map of this thesis by presenting the research

questions that need to be addressed to develop automatic detection of protective

behavior. Within each research question, we present the challenges from different

aspects, and discuss how our work contributes to this research area.

1.1.1 Continuous PBD in Pre-Segmented Activity Instances

The first question this thesis investigates is if the use of deep learning could lead to

activity-independent continuous PBD in pre-segmented instances. Since CP rehabili-

tation extends to everyday life, the PBD function needs to be activity independent

since activities are not known a priori as in an exercise session. Even supposing that

data could be pre-segmented per activity type, various challenges remain.

• The knowledge provided in previous PBD approaches is very limited, as interesting

results were only achieved per overall activity instance and their feature engineer-

ing methods were not evaluated across different activity types [12, 29]. To tailor

support for self-management, it is important to continuously track the occurrence

of protective behavior to understand which (temporal) part of an activity is more

feared. This calls for the use of deep learning methods able to acquire generalizable

features from the movement data across different activity types, which also raises

the need to search for the suitable parameters for sliding-window segmentation

during continuous processing.

• While deep learning generally needs a large size of data for training, datasets in the

context of movement-oriented medical analysis are generally small. This is partic-

ularly the case for CP physical rehabilitation. Indeed, it is widely acknowledged

that collecting data from special groups, e.g., people with CP, is challenging given

the demand the condition imposes on the people (e.g., pain, anxiety, depression).

In addition, increasingly strict data protection regulations make it difficult to share

data across research groups. Whilst we expect to see such datasets growing, it is

important for us to think about how the available data for CP rehabilitation can be

augmented to enable PBD with deep learning.
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Figure 1.1: Chapter 4 studies different data preprocessing methods for raw data sequences
of protective behavior across different activity types (data segmentation and
augmentation), using various vanilla neural networks on data collected from real
people with CP. The aim is to identify methods for activity-independent tracking.
This work is published in ACM HEALTH and ISWC/Ubicomp’19. [8, 9].

Chapter 4 presents our study (as illustrated in Figure 1.1) that is preliminary

but still the first to explore continuous PBD within each activity instance and across

different activity types. First, we explore how to transform the raw data sequences

into practical training and testing sets to aid model development. As the first study

on this topic, our study covers different important issues in data preprocessing.

Specifically, we explore what type of data augmentation is more effective to help

train a robust model toward real-life use. We further study the impact of sliding-

window length used in data segmentation to understand its relation with each activity

type and with data comprising different activities. This is important to understand

how parameter choices may be affected by other datasets of similar type.

The EmoPain dataset [12] that we use throughout this thesis comprises 18

CP and 12 healthy participants, the data collection and annotation of which took

nearly a year to finish, according to the authors of the dataset. While a dataset of

such size is not equivalent to the ones typically used in more popular deep learning

research, it is important to start addressing critical questions in relation to PBD while
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larger datasets are being created. As discussed in Chapter 4, the basic everyday

types of movement present in this dataset together with the in-depth exploration and

analysis of the above questions show great potential for applying our findings on

preprocessing data for using deep learning on other relevant tasks and datasets.

1.1.2 Capturing Variety in Protective Behavior Detection

The second research question we explore is how to improve the PBD performance

given the variety among people with CP in exhibiting protective behavior. This

question is raised according to the following observations. The physical and mental

capabilities of a person vary given different functional activities, i.e., he/she may find

it harder when standing up but easier during sitting down. In addition, for the same

functional activity, different people may have varying capabilities in performing it.

As a result, these varieties increase the difficulty for a model to detect protective

behavior across subjects and activity types.

In Chapter 5, we investigate the use of attention-based deep learning architecture

to improve the detection of protective behavior by capturing the most informative

temporal and bodily cues characterizing specific movements and the strategies

Figure 1.2: Chapter 5 proposes a novel model named BANet that combines the learning of
temporal and bodily attention to improve the PBD performance by capturing the
variety among people with CP in performing protective behavior. Informed by
effects of protective behavior on movement, the analyses of the temporal and
bodily attention scores reveal the larger variety of movement strategies and the
continuous shift in attention paid to the feared body parts of people with CP.
This work is published in a workshop at ACII’19 [10].
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used to perform them (see Figure 1.2). We propose an end-to-end deep learning

architecture named BodyAttentionNet (BANet). With two consecutive attention

modules, BANet is able to learn temporal segments and body parts that are more

informative to the detection of protective behavior. With such a data-driven self-

attention mechanism, the approach operating on low-level features independently

of the type of movement conducted appears to capture the variety of ways people

execute a movement (including healthy people).

An analysis of the attention scores produced by BANet when fed with the testing

data reflects the typical characteristic of protective behavior highlighted by previous

pain literature [21, 23, 30, 31]. Therein, attention scores vary more significantly

from one body part to another over time during the modeling process of PBD given

data from people with CP than what in healthy people. Such patterns may relate

to how each body part become the center of attention during specific phases of a

movement, since either the body part is perceived in danger or it is used to avoid the

use of parts in danger. Instead, the attention scores that emerge from the modeling

of healthy people suggest more homogeneous values across body parts and across

time. Finally, the proposed learning architecture is proved to work for activity type

recognition, achieving very competitive if not better performances than previous

state-of-the-art methods for activity recognition on benchmark datasets.

1.1.3 Continuous PBD in Sequence of Various Activities

The third research question targeted in this thesis is how to enable PBD across a con-

tinuous data sequence comprising different activity types without pre-segmenation

(see Figure 1.3). Given a data sequence of activities and transitions between them,

an ideal system should be able to perform behavior detection continuously. In order

to do so, the following challenges are identified.

• In real life, activities and transitions between them are conducted in a continuous

manner, hence the system, with the aim of providing real-time interaction with the

user, has to continuously detect the behavior across such a sequence of activities

and transitions. For this requirement, since the protective behavior changes accord-

ing to the type of activity being performed, not knowing the type of activity makes
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the detection more difficult. Although in Chapter 4 and Chapter 5 we show the

possibility of PBD across different activities without knowing the activity type, it is

seen that padding with the following samples beyond the current activity instance

leads to reduction in performance. Additionally, in these two studies, the use of

pre-segmentation already removed the extra influence of the transition activities.

• Furthermore, some behavior detection tasks are usually carried out in a simplex

context, e.g., with a fixed activity background. Under the rehabilitation scenario,

a study presented in [32] explored the continuous detection of pain and anxiety

in stroke patients during arm-based exercises. While this is a critical step in such

direction, the patient was constrained to a sit-down position with only the arm

engaged in the movement. In another study [33], the authors explored the emotion

recognition during walking, which is also a simpler (stereotypical) problem to

address. When the behavior is exhibited in a more complex context, e.g., in varying

activity types, these methods may easily fail to reach an acceptable performance,

due to the inference of the changing activity background.

• Finally, people with CP usually tend to take relaxations to manage their pain

Figure 1.3: Chapter 6 investigates how to enable PBD across continuous data comprising
different activity types without pre-segmentation, by leveraging activity recog-
nition for contextualization. The backbone of the proposed model is a graph
convolutional network, and the loss function is designed to counter class imbal-
ances during training. This work is published in IMWUT/Ubicomp’21 [11].
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during the transition between activities-of-interest. This leads to increased class

imbalances, as not only more non-protective samples are introduced but also the

movements irrelevant to activities-of-interest are added.

In short, one challenge is the inference of noisy context of varying activity types

for behavior detection, and another challenge is the possible class imbalance existing

in the continuous movement sequence caused by transition/irrelevant movements. As

we start from activity-independent PBD, we now move to fully leveraging activity

recognition to improve PBD in continuous data. Hence, in Chapter 6, we approach

continuous PBD with continuous recognition of the activity (HAR) being performed.

We propose a novel hierarchical HAR-PBD architecture (see Figure 1.3), where the

activity type when recognized is continuously leveraged to build activity-informed

input for concurrent PBD. Our experiments show that the activity-type information

is important for PBD in continuous data, which leads to improved performance

than the method that only alleviates the class imbalances that comes with the use of

continuous data. This finding shall contribute to future studies working on movement

behavior detection or affect recognition from body movements that the contextual

information of the behavior or affective bodily cues, e.g. the type of activity being

performed, is beneficial to improve the detection/recognition performance.

1.2 Thesis Structure
Chapter 2 provides the background on protective behavior, deep learning for

movement-based tasks, and several machine learning works relevant to real-life

challenges that could exist in the deployment of our method.

Chapter 3 presents the dataset that we mainly use for the evaluation of our methods,

together with data preprocessing methods, vanilla neural networks, and validation

methods and metrics that we use throughout the thesis.

Chapter 4 studies Research Question 1 with comprehensive experiments and analyses

conducted to evaluate the impact of data preprocessing methods, including data

segmentation and augmentation, on the PBD performance.

Chapter 5 works on Research Question 2 by proposing a novel attention-based
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learning model to combine temporal and bodily attention mechanisms to improve the

PBD performance; analysis of the attentional scores help us understand the various

movement strategies adopted by people with CP; an extra evaluation of our method

on the movement dataset for activity recognition demonstrates its generalizability.

Chapter 6 explores Research Question 3 with a novel hierarchical learning model

that leverage activity recognition to improve PBD in continuous data; the use of

graph convolutional network and a refined loss function designed for alleviating

class imbalances also contribute to the improved performance.

Chapter 7 lays the conclusion, demonstrates the possible future use cases, reasons

our limitations and shed light on future works.

1.3 Research Publications
Here, we list the peer-reviewed publications that originated from the studies de-

scribed in this thesis. Publications that originated from my collaborations with other

researchers beyond this thesis are also reported. * denotes equal contribution.

1.3.1 Publications from this Thesis

• Chongyang Wang, Temitayo A. Olugbade, Akhil Mathur, Amanda C. De C.

Williams, Nicholas D. Lane, and Nadia Bianchi- Berthouze. “Recurrent Net-

work Based Automatic Detection of Chronic Pain Protective Behavior using

MoCap and sEMG Data.” 23rd International Symposium on Wearable Computers

(ISWC/Ubicomp’19), ACM, 2019. Oral presentation. Presented in Chapter 4.

• Chongyang Wang, Temitayo A. Olugbade, Akhil Mathur, Amanda C. De C.

Williams, Nicholas D. Lane, and Nadia Bianchi- Berthouze. “Chronic-Pain Protec-

tive Behavior Detection with Deep Learning”. ACM Transactions on Computing

for Healthcare (ACM HEALTH), 2, 3, 2021. Presented in Chapter 4.

• Chongyang Wang, Peng, M., Olugbade, T. A., Lane, Nicholas. D., Williams, A.

C. D. C., and Bianchi-Berthouze, Nadia. “Learning Bodily and Temporal Attention

in Protective Movement Behavior Detection”. 8th International Conference on Af-

fective Computing and Intelligent Interaction Workshops and Demos (ACIIW’19),
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IEEE, 2019. Oral presentation. Presented in Chapter 5.

• Gold, N. E., Chongyang Wang*, Temitayo Olugbade, N. Berthouze, and A.

Williams. “P[l]aying Attention : Multi-Modal, Multi-Temporal Music Control”.

International Conference on New Interfaces for Musical Expression (NIME), 2020.

Poster presentation. Presented in Chapter 5.

• Chongyang Wang, Yuan Gao, Akhil Mathur, Amanda C. De C. Williams,

Nicholas D. Lane and Nadia Bianchi-Berthouze. “Leveraging Activity Recognition

to Enable Protective Behavior Detection in Continuous Data”. Proceedings of the

ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT),

5, 2, 2021. Presented in Chapter 6.

1.3.2 Publications from Collaborations beyond this Thesis

Beyond the studies included in this thesis, I have also contributed to the following

publications during my PhD in collaborations with other researchers.

• Min Peng, Chongyang Wang*, and Tong Chen. “Attention Based Residual

Network for Micro-Gesture Recognition”. Proceedings of 13th IEEE International

Conference on Automatic Face and Gesture Recognition (FG’18), IEEE, 2018.

Oral presentation.

• Min Peng, Chongyang Wang*, Bi, Tao, Chen, Tong., and Zhou, X. “A Novel

Apex-Time Network for Cross-Dataset Micro-Expression Recognition”. 8th Inter-

national Conference on Affective Computing and Intelligent Interaction (ACII’19),

IEEE, 2019. Poster presentation.

• Chongyang Wang, Min Peng, Tao Bi, and Tong Chen. “Micro-Attention for

Micro-Expression recognition”. Neurocomputing, 410, 2020.

• Min Peng, Chongyang Wang*, Yuan Gao, Shi Yu, and Xiangdong Zhou. “Multi-

level Hierarchical Network with Multiscale Sampling for Video Question Answer-

ing”. IJCAI, 2022.
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1.3.3 Hosting Workshop and Challenge to Boost PBD Research

During my PhD, I also contributed to boosting the research in the area of pain-related

state detection. I contributed to the hosting of a workshop [34] about recognition,

treatment, and management of pain and distress (hosted at ACII’19), and was in

charge of the website establishment and promotion. I was the data co-chair for the

EmoPain Challenge [35] (hosted at FG’20) and in charged of the sub-challenge of

protective behavior detection. Results of the challenge are published in the paper

reported below (the order of authors is related to the order of the sub-challenges).

I also contributed as data co-chair for the EmoPain challenge 2021 [36], a sub-

challenge of Affect Movement Recognition Challenge (hosted at ACII’21). These

workshop and challenges held in the past three years have attracted more than 20

international research groups to participate, while the studies presented in this thesis

are among the essential references for their works.

• Egede, Joy O., Siyang Song, Temitayo A. Olugbade, Chongyang Wang*, C. De

C. Amanda, Hongying Meng, Min Aung, Nicholas D. Lane, Michel Valstar, and

Nadia Bianchi-Berthouze. “EmoPain challenge 2020: Multimodal pain evaluation

from facial and bodily expressions”. 15th IEEE International Conference on

Automatic Face and Gesture Recognition (FG’20), 2020. (Egede and Song chaired

on pain recognition from facial expression, Olugbade chaired on pain recognition

from movement, Wang chaired on protective behavior detection.)



Chapter 2

Background

In this chapter, we review the literature that plot our background, help highlight past

limitations, and provide knowledge to inform the research presented in this thesis.

We first review works on protective behavior to understand what it is and

what have been achieved so far for automatic Protective Behavior Detection (PBD).

Secondly, we review the literature on deep learning for body movement behavior

detection and human activity recognition to understand how it can be leveraged and

advanced in the case of continuous PBD. Thirdly, we present studies from a broader

research community to gain inspirations for the problems of sensor set optimization

and using context recognition to improve the task-of-interest that exist given a more

complex learning scenario. Finally, we summarize the key takeaways from the

literature review and formulate the research questions that emerge.

2.1 Protective Behavior in Chronic Pain
Physical rehabilitation is an important part of the management of Chronic Pain (CP),

where pain associated with dysfunctional changes in the nervous system persists

and leads to reduced engagement in everyday physical activities despite the lack of

injury or tissue damage [7, 37]. According to the fear-avoidance theory, reduced

engagement with physical activity and use of maladaptive protective movement

strategies [21], collectively referred to as ‘pain behaviors’, are often the result of fear

of pain rather than injury or pain itself. This fear is mostly due to the association of

movement with pain [23, 30].
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Protective behaviors have been particularly highlighted as observable pain

behaviors that can provide insight into the psychological capability of a person to

manage their condition, and hence inform intervention [21, 31, 38]. It is correlated

with self-reported pain and fear-related beliefs [21, 39] but its correlation with pain is

often mediated by anxiety rather than directly explained by pain levels [19]. Further,

unlike facial and vocal expressions which primarily act as tools in communicating to

an empathetic audience, protective behavior has been found to have a primary role

to protect (from which it derives its name) from perceived danger of injury or of

increase in pain and so is more reflective of perceived physical demand [31].

Here, we first review the background study on protective behavior in the pain

literature, and then previous works on its automatic detection.

2.1.1 Protective Behavior in Chronic Pain Literature

The popular method to systematically analyze protective behavior was proposed in

[21]. Using trained observers to manually label videos of patients performing specific

movements [21, 31], they showed that specific protective behaviors were exhibited

by people with lower-back CP and that such analysis is critical to understand how

well a person with CP is coping with their condition and is able to engage with their

everyday life. Table 2.1 provides a detailed description of the identified protective

behaviors that used in this thesis according to the previous studies [21, 12, 40].

We focus on the behavior in 5 categories: guarding/stiffness, hesitation, use

of support/bracing, abrupt motion, and rubbing/stimulation. Particularly, the first

two categories refer mainly to alteration in the movement dynamics and trajectory,

Table 2.1: The Five Categories and Definitions of Protective Behavior used in this Thesis

Category Definition
Guarding/Stiffness Stiff, interrupted or rigid movement.

Hesitation
Stopping part way through a continuous movement with the movement
appearing broken into stages.

Support/Bracing
Position in which a limb supports and maintains an abnormal distribution of
weight during a movement which could be done without support.

Abrupt Motion
Any sudden movement extraneous to be intended motion; not a pause as in
hesitation.

Rubbing/Stimulation
Massaging touching an affected body part with another body part, or shaking
hands or legs.
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suggesting that the movement is broken into stages as a way to better control the

movement and protect oneself. The third category indicates the use of support (either

with objects such as a chair or other body parts of oneself) to avoid or alleviate the

engagement of the painful part. The last category is referring to movements that may

aim to relieve pain.

The way these protective behaviors are instantiated depends on the type of

activity performed (e.g., sitting down vs. reaching forward to the car roof) and what

parts of the body the person perceives as reliable to protect the painful ones [12, 19].

They also depend on the environment, i.e., sitting on a hard chair vs. a lower soft sofa

where the use of support strategies may be less helpful. This results in a variety of

protective movement strategies that people with CP use to cope with their condition

and the environment as they engage in physical exercises or daily functioning.

Unfortunately, expert visual assessment is expensive and impractical given the

prevalence of CP [41, 42], limiting observation to clinical settings, where a patient’s

behavior does not often reflect the person’s abilities (or struggles) to move and

manage during the more complex everyday environment [43]. As such, the need to

better understand such behavior in real-life has raised the necessity to use technology

as a way to monitor such behavior and provide the necessary advice [44, 45].

However, the approaches used in the past have been limited to analyzing coarse

behavior, such as studying how far and where a person moves with respect to their

home using Fitbit and GPS-based technology [26]. The findings from these studies

showed limited correlations with key affective variables that characterize the ability

of the person to self-manage their conditions. Moreover, it is not the quantity of

activity that matters, but the quality and the type of activity (or aspect of activity) that

are avoided (e.g., the tendency to avoid bending the trunk when sitting down) that

provide insights on the ability of the person to cope with and manage their condition

[24]. Such avoidance behavior can lead on to further debilitation and increase in pain

as the person loses physical capabilities and normal muscle strength and efficiency.

In addition, as physical rehabilitation in chronic conditions transitions from

clinician-directed into self-managed (in the form of self-managed activities or func-
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tional tasks such as doing housework as a way to exercise [26]), visual inspection

in situ becomes unfeasible. At the same time, self-report of pain behaviors [43] in

everyday functioning is unreliable, as people with CP may not be conscious of their

responses to pain or feared situations [26, 27]. More importantly, self-report does

not allow for fine-grained assessment of adopted movement strategies, which are

necessary for insights into subjective experiences [21, 46] and for adjusting exercise

plans or other forms of feedback (e.g., just-in-time reminders to breathe deeply to

reduce tension during the feared part of a movement).

Despite the limitation, the systematic analysis of movement proposed in the

above pain literature suggests that protective pain behavior could be automatically

tracked, and such capability could be embedded in ubiquitous rehabilitation technol-

ogy to enable a more personalized and on-the-movement support to people with CP

during their everyday life.

2.1.2 Automatic Analysis of Pain Behavior

The use of body movement as a modality for automatic pain-related detection has

been largely ignored, even though bodily behavior such as protective behavior is

possibly more pertinent to pain experiences than facial or vocal expressions [31].

The relevance of the body, as an affective modality in general, is in its indication

of action tendency [47], which in the case of pain is to protect against perceived

harm or injury [31]. It has been indeed suggested that the body [47] is an effective

modality for automatic detection of affect, although most of the work in this area has

been focused on the so-called basic affective states like happiness, sadness, anger,

surprise, and scare [48], and on some sport related emotional states [49, 50].

More recently, researchers have also started to explore the importance of body

expressions in the diagnosis and management of various medical conditions such as

autism [51], depression [52], stroke [5, 1], and more relevant to this thesis, CP [31].

The interest on modeling body expressions is increasing thanks to the availability

of increasingly robust vision-based skeleton tracking software and also low-cost

wearable motion capture technology. Here, we review the research on automatic

detection of body expressions in relation to pain behavior. A summary of the works
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Table 2.2: Summary of past works before this thesis on pain-related recognition tasks.

Study Dataset Task Method Result

[53]
EMG data from the
right and left vertebral
muscles

Analyze the differences between
people with CP and healthy people
during static and dynamic postures

Two-group discriminant
function analysis with
features like mean
bilateral level and
lumbar curvature etc.

Statistically significant
differences are found
between the two groups
of people in muscle activity

[39]
sEMG data from the
lumbar paraspinal
muscles

Analysis of factors related to
muscle relaxation status of people
with CP during exercises

Statistical analysis (linear
regression analysis etc.)
based on flexion relaxation
ratio

EMG data could provide
evidence to the appearance
of protective behavior

[54]
3D coordinate data of
head and torso

Classification of neck movement
patterns related to
Whiplash-associated disorders

1-layer neural network with
principal component
analysis

Accuracy of 0.89

[55]
kinematic data for
spinal movement

Classification of self-reported pain
levels 3-layer neural network

Prediction share high
relevance with reported
pain level (R2 = 0.997)

[56] EmoPain dataset
Classification of three pain levels
in the activity of
reaching forward

SVM with movement and
muscle activity descriptors

F1 of 0.63 and 0.69 for
the classification with movement
and sEMG data, respectively,
and 0.8 for combined input

[57] EmoPain dataset
Classification of three pain levels
in the activities of
bending and sit-to-stand

SVM with movement
feature optimization

Accuracy of 94% and
80% for the classification
in bending and
sit-to-stand respectively

[19]
EmoPain dataset
Ubi-EmoPain dataset

Classification of Movement-related
self-efficacy in the activities
of reach-forward and sit-to-stand

SVM with movement
features

Mean F1 of 0.95 and
0.78 for the classification
in reach-forward and
sit-to-stand respectively,
and 0.79 for Ubi-EmoPain
dataset

[38]
EmoPain dataset
Ubi-EmoPain dataset

Classification of two distress levels
and three pain levels in the
activities of bending and sit-to-stand

SVM and RF with
movement features

Mean F1 of 0.88 (0.67) and
0.83 (0.85) and 0.86 (0.81)
for the stress classification
in bend, reach-forward and
sit-to-stand respectively, and
0.85, 0.84 for pain
level classification in
bend and sit-to-stand,
for EmoPain (Ubi-EmoPain)
dataset

[29] EmoPain dataset
Classification of guarding behavior
in the activities of sit-to-stand
and one-leg-stand

RF with posture and
velocity features

Mean F1 of 0.81 and
0.73 for the classification
in sit-to-stand and
one-leg-stand respectively

is shown in Table 2.2.

The majority of the work done in relation to automatic detection of pain behavior

have been on automatic differentiation of people with CP from healthy control

participants using movement and electromyography (EMG) data, and recognition of

anxiety and pain levels of the people with CP.

In an earlier study [53], researchers used a set of features computed from the

EMG data like Mean Bilateral Level (mean of the average scores of the EMG data

collected from right and left vertebral muscles) and Right/Left difference (difference

of such average scores) to analyze the differences between people with CP and

healthy controls during both static and dynamic postures. Obvious differences in

those EMG features between the two groups of people were only found during dy-



2.1. Protective Behavior in Chronic Pain 39

namic postures (trunk flexion and rotation), especially when the range of movement

was high, which suggest an altered muscle tension in people with CP during specific

dynamic postures.

A later study [39] used surface electromyography (sEMG) to explore the dy-

namic activity of the lumbar paraspinal muscles in people with CP during exercises.

They used a movement feature called Flexion Relaxion Ratio (FRR) to represent the

Flexion Relaxation Phenomenon (FRP), which is a typical indicator for a reduction

or silence of myoelectric activity of the lumbar erector spine muscle during full

trunk flexion seen in normal people. Their analysis has shown that, independently of

the range of motion and pain level, the FRP measured by FRR disappeared or was

limited due to the fear of injury and low self-efficacy beliefs.

The above studies show that EMG can be an informative signal representing the

appearance of psychological responses to feared movement (which lead to protective

behavior in many situations) in people with CP during activities. In other words,

by looking at the movement of people with CP and together with the EMG data

collected from the sensitive muscle groups of the back, it could be feasible to detect

events of protective behavior.

A more recent study [54] used an artificial neural network with one hidden

layer to help the diagnosis of Whiplash-associated disorders (WAD) based on neck

movement. They calculated the rotation angle and angle velocity given the 3-

dimensional coordinate data collected with 6 markers attached to the head (3 markers)

and torso (3 markers), then performed Principal Component Analysis (PCA) to

reduce the dimensionality as well as to improve the performance of the shallow

network. Through an experiment on 59 WAD subjects and 56 control subjects, the

result were very promising, with an accuracy of 0.89. Although the scenario of neck

movement is much simpler than studies working on full-body movement during

everyday activity, the study demonstrated the possibility of using an artificial neural

network and the angular movement features of the affected body part to detect the

movement patterns triggered by some medical conditions.

Studies reported in [55, 56, 57, 38] further discriminated levels of self-reported
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pain in people with lower-back CP. The kinematic 3D coordinate data collected from

the markers attached to the inter-pedicle screws placed at right and left L4 (or L5)

and S1 segments for the spinal movement was used in the first study, and full-body

motion data and sEMG data collected from four sections of the back were used in

the later three studies. A common finding in these studies is that the way a person

with CP handles a painful anatomical body segment provides information about their

subjective pain experiences, such as the flexion range of the lumbar spine represents

the confidence of the subject during activity like forward reaching.

A more directly relevant study to the one discussed in this thesis is presented

in [12]. Rather than detecting the level of pain, the study aimed to automatically

detect the presence or absence of protective behavior. Like in [19, 56, 57, 38]), this

study used the EmoPain dataset presented in the same paper. This dataset comprises

full-body movement and sEMG data recorded while people with CP (and healthy

control participants) performed 6 physical activities typically challenging for this

cohort. Figure 2.1 show some image samples of a participant performing a reaching

forward movement during the data collection of the EmoPain dataset. A more

detailed description of the EmoPain dataset can be found in Chapter 3. The authors

extracted a single feature vector including the range of angles for 13 full-body joint

angles, the mean energy for these angles, and the mean sEMG recorded bilaterally in

the lower and upper back muscles for each exercise instance. These feature vectors

were used to predict the mean (across 4 raters: two physiotherapists and two clinical

psychologists) of the proportion of the instance that had been binarily labelled as

guarding based on Random Forests (RF). For all the activity types, they obtained

mean squared error between 0.019 and 0.034 (average = 0.027, standard deviation

Figure 2.1: Image samples from the EmoPain dataset of a participant doing reaching for-
ward. The sensors used are Inertial Measurement Units (IMUs) and surface
Electromyography (sEMG) sensors. (Taken from [12])
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= 0.005), and Pearson’s correlation was between 0.16 and 0.71 (average = 0.44,

standard deviation = 0.16). The low correlation ratio despite low error rate suggests

that the predicted values are not very consistent with the ground truth across the

different activity types. Previous classification of a subset of these data employed the

same feature extraction strategy and RF method, but turned to detecting the existence

of protective behavior per overall activity instance and only focused on two of the

activities (sitting to standing and standing on one leg), achieving F1-scores of 0.81

and 0.73 respectively [29].

From another perspective, [19] investigated movement behaviors (e.g., guarding

and hesitation) that clinicians use in judging pain-related self-efficacy and showed

the feasibility of automatic detection based on these cues. Interestingly, guarding

behavior (a major type of protective behavior) was one of the cues of low self-efficacy

specified by clinicians.

[19] further provide evidence that low-cost body sensing technology can en-

able the detection of pain related experiences in functional activities (beyond just

exercises). In their first experiment with data collected using a full-body motion

capture suit comprising 18 IMUs (MetaMotion IGS-190) and 4 sEMG sensors, they

explored the impact of features computed from different body parts for pain intensity

recognition. These features were designed based on the visual inspection of different

types of activity and from the physiotherapy report, e.g. the range of trunk flexion

was extracted as a feature for bending and the knee and pelvic angles at the point

of lift was extracted for siting-to-standing. They managed to only use 4 IMUs

sensors (SparkFun MPU9150) attached to the head, trunk, right upper and lower

leg and 2 sEMG sensors (BITalino) attached to the right upper arm and trunk for

pain-level recognition. The experiment result of 0.79 for F1-score proved that a

smaller low-cost sensor set can also be applied for pain intensity analysis during

functional activity.

As we can see, for modeling the pain-related status and movement behavior,

the above feature engineering methods that aimed to conduct the task per activity

type are quite straightforward in methodology, i.e., using posture and velocity-
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based features together with shallow classifiers like SVM and RF, but also are not

discriminative enough for the task of PBD as the promising results are only achieved

on the modeling per each overall activity instance separately and only for few of the

activity types.

Unfortunately, at the time of the studies carried out in this thesis, the use of

deep learning approach on pain-related tasks had focused on facial behavior only.

This raises the question if deep learning could lead to better performances in the

detection of protective behavior than the one obtained with traditional machine

learning methods. In addition, it would be also important to understand if the

advanced learning techniques could lead to activity independent PBD so that it could

be used in everyday support to people. To this purpose, in the next section, we review

the literature on deep learning in (non-affect related) body movement-based tasks to

gain some inspirations.

2.2 Deep Learning for Body Movement Analysis
To better understand how to improve the recognition of protective behavior, we review

here the previous state-of-the-art deep learning approaches used for movement-

related tasks. In particular, we first review the literature on using vanilla deep learning

for Human Activity Recognition (HAR) with wearable sensors. Secondly, we shift

the focus to more relevant studies from the HAR community on abnormal movement

behavior detection. Table 2.3 summarizes the used datasets, data preprocessing

parameters, validation methods, models, and results of these studies.

2.2.1 Deep Learning for Human Activity Recognition

Deep learning is the leading approach in many very challenging tasks such as object

detection, video understanding, and speech recognition, with increasing use toward

applications in healthcare domain [64].

The core merit of modern neural networks, where the use of traditional fully

connected layers is drastically reduced, is the ability to learn from large sets of high

dimensional (and low-level representation of) data [64]. In comparison to traditional

feature engineering methods, the generalization ability of a deep neural network is
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Table 2.3: Summary of past works exploring vanilla deep learning methods for wearable
human activity recognition and abnormal behavior detection.

Study Dataset Preprocessing Validation Model
Results on the

Respective Dataset
(F-measure)

[58]
Opp (10 low-level activities, 1 accelerometer)

Skoda (10 activities, 1 accelerometer)
Actitracker (6 activities, cellphone)

Fixed window length of 64
timesteps and 50% overlapping.

Hold-out
validation

CNN with
partial sharing

Acc: 76.83%
88.19%
96.88%

[59]
Opp (18 mid-level activities, accelerometers and IMUs)

Hand Gesture (12 gestures, 1 accelerometer and 1 gyoscope)
Fixed window length of 1s

and sliding step of 3 timesteps.
Hold-out
validation

CNN with
temporal convolution

Acc: 0.56
0.90

Sliding window segmentation with DNN 0.904, 0.575, 0.633
[13] Opp (18 mid-level activities, accelerometers and IMUs) 1s length, 50% overlapping Hold-out 1 layer CNN 0.937, 0.591, 0.684

PAMAP2 (12 lifestyle activities, IMUs, temperature, heart rate) 5.12s length, 78% overlapping validation b-LSTM 0.868, 0.745, 0.741
DG (gait, 3 accelerometers) 1s length, 50% overlapping LSTM 0.882, 0.698, 0.76

[60]
Opp (18 mid-level activities, accelerometers and IMUs)

PAMAP2 (12 lifestyle activities, IMUs, temperature, heart rate)
Skoda (10 activities, 10 accelerometers)

Bag-wise training with different
window sizes and testing per sample

Hold-out
validation

Ensemble of
2-layer
LSTM

0.73
0.85
0.92

[14]
Opp (18 mid-level activities, 5 IMUs)

Skoda (10 activities, 20 accelerometers)
Non-overlapping sliding

window with length of 9.7s
Hold-out
validation

3 layers CNN
with LSTM layer

Transfer from
Opp to Skoda

0.85
Transfer from
Skoda to Opp

0.25

[61] DG (gait, 3 accelerometers)
Fixed window length of 58s.

Augmentation with
Rotation and Permutation

5-fold
cross

validation

9 layers
CNN 86.76% (Acc)

[62]
SMMs (Behavior detection during seating and 3

classroom activities, 3 accelerometers)
Sliding window with 1s

length and 87% overlapping
Leave one
subject out

3 layers
CNN

0.74 on lab data
0.5 on classroom data

Sliding window with Leave
3 layers CNN with
transfer learning

0.78 on lab data
0.56 on classroom data

[63]
SMMs (Behavior detection during seating and 3

classroom activities, 3 accelerometers) 1s length and one subject
3 layers CNN plus

LSTM layer
0.75 on lab data

0.48 on classroom data

87% overlapping out Ensemble of LSTM
0.77 on lab data

0.53 on classroom data

better as high-level representation and data semantics could be automatically learned

from the raw data or low-level representations under the guidance of the task, which

usually does not require prior knowledge about the type or characteristic of the

input data (e.g., the activity type that usually used for the feature engineering in

pain-related movement tasks as seen in the last section).

Similar to the other domains listed above, advances in HAR have also benefited

from the exploration of deep learning. Particularly, the successful application of deep

learning in HAR was enabled by an effort in the HAR community to create a series

of benchmark datasets collected with inertial sensors: e.g., the Opportunity dataset

(Opp) [65], the PAMAP2 dataset [66], and Skoda dataset [67]. The aim of these

datasets is to foster research on recognizing the type of movement, and activity like

functional activities, rather than evaluating their qualities such as detecting protective

behavior or other affect-influenced movement behaviors [68]. Still, as the data share

very similar structure, the knowledge in HAR studies using movement data can be

leveraged for our work on PBD. An illustrative diagram summarizing these works is

shown in Figure 2.2.

In the following, we review in detail some impactful wearable HAR studies

proposed in the past that are among the first to explore the use of vanilla neural
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Figure 2.2: Earlier studies proposed for HAR using deep learning treats the movement data
collected from different positions as a data matrix, with vanilla neural networks
like CNN, LSTM applied directly on it. (partially taken from [13, 14])

networks to gain a basic idea about how deep learning is adapted in this scenario.

It should be noted that, although data for PBD comprise full-body coordinates

transferred from the raw signal collected from 18 IMUs, other HAR studies using

full-body skeleton (coordinates) data that usually collected from visual sources (e.g.,

the NTU RGB+D [69] and Kinetics [70] datasets) would be reviewed in later study

chapters, as at the beginning of our research we do not use the full-body coordinate

data for modeling.

Based on the subsets of Opp (10 low-level activities plus 1 null activity with

one sensor on the right arm) and Skoda (10 activities related to the right arm with

one accelerometer on the right arm) datasets, [58] adopted a CNN network with

a partial weight sharing strategy designed for temporal signal processing to take

the temporal signal frames of 64 timesteps at X, Y, and Z axis as input separately.

The network achieved classification accuracies of 88.19% and 76.83% on the two

datasets, respectively. The study in [59] extended the capacity of CNN to adopt a

temporal convolution to process data collected from accelerometer as well as other

sensor types like gyroscope and magnetometer. For the 18 mid-level activities of the

Opp dataset, their method achieved an average F1 score of 0.56.

A study seen in [14] used a stack of two convolutional layers followed by max
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pooling, one (more) convolutional layer, long-short term memory (LSTM) layer,

and dense (with softmax activation) layer for wearable HAR. They further applied

a transfer learning strategy by training with the Opp dataset, although without the

feet data, to classify the activities in the Skoda dataset based on data collected from

the arms. Interestingly, the authors obtained mean F1-scores of 0.40 and 0.85 on the

source and target datasets, respectively. When the Skoda dataset was used to train the

network instead, the mean F1-score achieved for the Opportunity dataset was only

0.25. As they reasoned in the end, the performance of such transfer learning-based

method depends a lot on the correlation between the source and target datasets.

Therefore, in their case, when the source dataset comprising activities of richer

variability (Opp) is used, the performance on the target dataset with lower variability

(Skoda) is largely improved.

To compare the performance of networks comprising convolutional or LSTM

layers, [13] used a pure LSTM network comprising three bidirectional LSTM layers

(Bi-LSTM), a convolutional network that contains one convolutional layer with

max pooling and one fully-connected layer, and the convolutional LSTM network

(Conv-LSTM) proposed in the study above to classify 18 types of everyday physical

activities in the Opp dataset. The best result was obtained using the Bi-LSTM

network with mean F1-scores of 0.745 (compared with 0.591 and 0.704 using CNN

and Conv-LSTM) using hold-out validation, based on movement data recorded from

the upper limbs, feet, and trunk of 4 participants in the dataset. In this study, data

samples were windows of lengths of 1 and 5.12 second (s), with overlapping ratio of

50% and 78% respectively, segmented from activity instances.

Studies presented above show that the recurrent networks using LSTM units

or the network comprising recurrent LSTM layers show better performance in

dealing with sequential movement data than pure CNNs. Meanwhile, a sliding

window segmentation method was applied to extract consecutive frames from the

raw movement sequence to make input of the model. However, the segmentation

length, an impactful parameter as reasoned in [18], was not further studied in their

works to see how it may affect the performance on activity recognition. While we
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are inspired by their success in applying vanilla deep learning models on HAR tasks,

our research presented in Chapter 4 aim to further study the parameters (e.g., sliding

window length) used in data preprocessing to understand how they may impact

the model performance and what factors should be considered to find a suitable

parameter set for future relevant datasets.

The study in [60] achieved mean F1 scores of 0.73 and 0.85, based on hold-out

validation, respectively on the Opp and PAMAP2 datasets using an ensemble of two-

layer LSTM networks with dropouts added after each layer and a dynamic windowing

approach. This method further led to a mean F1 score of 0.92 on the Skoda dataset

for car manufacturing activity. Instead of using a fixed sliding window segmentation,

and also in order to avoid the selection of window length, they performed a bag-wise

training where random sizes of windows were used.

As we can learn from these works, aside from better performances gained with

deep learning and particularly LSTM-involved networks, studies on PBD could

be conducted to also evaluate the segmentation procedure as it remained unknown

how the segmentation parameter may impact the model performance and what

factors should be considered to find a suitable set given a new dataset in the future.

Specifically, if we use a fixed-length window segmentation, a further study on how

the window lengths may affect performance on PBD within each activity type or

across different types shall be studied. This is particularly important as we want

to derive knowledge from our PBD study on the existing dataset to future works

using datasets having the same or relevant tasks about affect-influenced movement

behavior detection. Furthermore, as can be inferred from [2] that the discussion on

choosing window lengths may get avoided if one conduct training with frames of

various lengths and make prediction per timestep, we also evaluate this approach in

our experiments to verify its effectiveness when the learning scenario is transferred

from activity recognition to movement behavior detection.

2.2.2 Deep Learning for Abnormal Behavior Detection

Studies on activity recognition reported above provided insights on the comparison

of different vanilla network structures in dealing with wearable data sequences.
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Instead of only recognizing the type of activities, it is interesting for our work

to understand how such network architectures can be used for specific altered or

anomalous behavior detection.

Aside from the analysis of protective behavior in CP that we discussed in

Section 2.1, here we present two datasets that have been released to the ubiquitous

computing community before this work that led to relevant deep learning studies on

the analysis of anomalous movement behaviors.

First is the Daphnet Gait (DG) dataset [71] that used for the detection of freezing

gait behavior in people with Parkinson’s disease (PD) during walking. The data

were collected from ten idiopathic PD patients using accelerometer and gyroscope

attached to the ankle, knee, and trunk. This task is more straightforward than PBD

that involved in a variety of functional activities: i) freezing gait behavior is marked

by a clear and brisk interruption of walking; ii) although the dataset contains a variety

of walking scenarios, e.g., walking in a straight line, random walking in a room, and

walking to fulfill daily tasks (entering a room, and getting something to drink), the

activity of interest generally remains the same. Nevertheless, it is still relevant to our

work, as hesitation or guarding (even if not brisk) may have a similar profile.

In [13], the researcher used a three-layer one-directional LSTM network to

automatically detect freezing gait behavior using data from the DG dataset, which

obtained a mean F1 score of 0.76 with hold-out validation. This result suggests

again the advantage of using LSTM on temporal data sequences with respect to other

network. Indeed, Deep Neural Network (DNN) and CNN respectively achieved only

F1 scores of 0.633 and 0.684.

In [15], a LSTM network that was extended to use temporal attention mechanism

has also been tested on the DG dataset, which was expected to be able to highlight

the freezing moment during walking. Their result showed the success of using a

temporal attention mechanism to differentiate the abnormal behavior from normal

movement along the temporal dimension of the movement. This study suggests that

attention mechanisms could be also useful for PBD in CP.

However, differently from dealing with just one type of altered behavior (freez-
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ing) during one type of activity (walking), our aim is to detect the existence of

protective behavior across a variety of functional activities. In this case, protective

behavior does not just occur temporally but also spatially as it is adopted by the

person, at that moment, to protect the body parts felt in danger and use the body

parts felt of aid and strong. Actually, temporal and spatial (configurational) attention

mechanisms were used in different types of architectures [15, 16, 17], showing clear

improvement in wearable HAR. Hence, it becomes interesting to explore how they

may improve PBD. We will review these architectures in Chapter 5 where we present

our own attention-based approach to PBD.

Addressing the problem of limited data size of the DG dataset, [61] proposed

to use a deep CNN with 7 layers, where each layer contains a convolutional layer,

a batch normalization layer, and an activation layer using rectified units (ReLUs).

Instead of using a fully-connected max-pooling layer, at the end, a global averaging

pooling layer was applied. Particularly, to fit such a deep CNN network with the DG

dataset, multiple data augmentation methods for movement data were tested. The

results (Accuracy=86.76%) showed a noticeable improvement acquired by combin-

ing data augmentation methods called Rotation (manually change the placement of

sensors, with accuracy of 82.62% when used alone), Permutation (re-organize the

temporal location of within-window events, with accuracy of 81.16% when used

alone), and Time Warping (distort the time intervals between samples to change the

temporal locations of them, with accuracy of 82.00% when used alone) than just use

the original dataset (Accuracy=77.54%). These results show that data augmentation

methods particularly designed for movement data sequences can help alleviate the

challenge of training a deep learning model with a dataset of limited size.

Another dataset called Stereotypical Motor Movements (SMMs) was developed

for the research of detecting stereotypical movements showed by people having

autism spectrum disorder (ASD), and was collected in a longitudinal study that first

presented in [51], and later in [72]. The data were collected from six participants

diagnosed with ASD using three accelerometers attached to both wrists and the torso.

Two data collection scenarios were considered, one is to let the participant sit in a
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lab alone interacting with the teacher who is familiar with the participant; another

is to let the participant sit in a classroom together with other students conducting

typical classroom activities (e.g., eating lunch, spelling program, sorting). In [72],

data were only collected in the classroom.

It is interesting to see that, in [51], the authors mentioned their pilot efforts

in evaluating the window lengths from 200ms to 5s using their method combining

time-frequency features and RF. The window length of 1s turned out to be the best

for the task, and was continuously used in later works built on the dataset. However,

details of such pilot study are missing, thus the knowledge provided in their work on

data segmentation is limited to the choice of this 1s window length.

[62] used a network of 3 convolutional layers, each followed by an average pool-

ing layer, on movement data in the SMMs dataset to detect movements stereotypical

of this cohort within window lengths of 1 second (overlapping ratio of 87%). Their

result of mean F1 score of 0.74 with the lab data outperformed the traditional feature

engineering method with Support Vector Machines (SVM) and RF used in [51, 72].

Unsurprisingly, the mean F1 score obtained was only around 0.5 with data collected

in the classroom, where the movement is less constrained and noisier. The poorer

performance may also be due to the smaller volume of data, as the convolutional

network used usually relies on a large set of data for training.

In a later work by them [63], they applied a more complex method for the same

dataset. First, they used the same CNN network that was proposed in [62] to extract

a discriminative feature space from the data, acting as a replacement for manual

feature engineering. Second, a single layer LSTM network was employed to learn

the temporal-dynamic feature, whilst an ensemble of LSTM learners was further

used to improve the accuracy. Third, transfer learning was performed for the CNN

network to use the knowledge learned from the lab to improve the detection on data

collected from the classroom. On a balanced training set where the categories are

equally distributed, the result of using CNN led to improved F1 scores of 0.78 and

0.56 on the two streams of lab and classroom data respectively after transfer learning.

In comparison to their first study mentioned above, the use of balanced training and
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transfer learning leads to improvement on the two data streams. Meanwhile, on the

original unbalanced training set, the result achieved by using LSTM and ensemble

of LSTM learners outperformed the CNN (F1-score of 0.75, 0.77, 0.71 on data

collected in lab, and 0.48, 0.53, 0.40 on data from classrooms by CNN, single LSTM,

and ensemble of LSTM, respectively).

Given the results from the above studies on the two datasets for abnormal

behavior detection, we can again observe that the temporal information stored in the

data sequence is critical for movement behavior analysis and was better modeled

with LSTM-involved network, whilst the data augmentation technique was also

beneficial to improve the performance on data of a smaller size.

2.3 Advanced Methods for Movement-based Tasks
The ongoing development of deep learning has resulted in a variety of spontaneous

responses in movement-based research. Aside from the preceding successes in

this area using vanilla deep learning approaches, we will now look at the more

recent progresses using advanced models. Given that we are employing full-body

movement data in our thesis, we also look at the literature that targets modeling with

a similar data structure.

2.3.1 Wearable HAR with Attention Mechanism

One of the trend for wearable HAR studies with data collected from sensors attached

to human body or vision-based motion capture systems is to make the model better

learn the hidden bodily and temporal information of body movement. Recently,

attention mechanisms have been explored to improve performances of wearable

HAR, with the advantage of enabling the network to focus on more informative

sensors (body positions) at important moments (temporal positions).

To encapsulate understanding of the relevance of each sensor attached to the

human body, Zeng et al. [15] proposed an attention-based LSTM architecture,

where a sensor-oriented attention module was used at the input level per timestep,

with an additional temporal attention module embedded in a layer following it (see

Figure 2.3 (a)). Their sensor-oriented attention module was implemented with a
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Figure 2.3: The trend we saw in recent models (a)(b)(c) proposed for sensor-based HAR
is to use attention mechanism to capture the informative local movement per
sensor position and the temporal saliency. Partially taken from [15, 16, 17].

softmax and bilinear function with input from different sensors at each timestep,

while tanh and softmax activation functions were together applied to compute the

temporal attention based on the output of the LSTM layer. Their method improved

the performance on three HAR benchmarks (PAMAP2 [66], DG [71] and Skoda

[67]) comparing to the performances of vanilla neural networks. Visualization of the

attention scores showed that the network is able to do subset learning of sensors at

important moments, especially for the detection of freezing behavior in DG dataset.

Along the same idea, Murahari et al. [16] focused on the implementation of

temporal attention for HAR by embedding it at the end of a convolutional LSTM

network (Conv-LSTM) [14] (See Figure 2.3 (b)). Similar to [15], they used tanh plus

softmax functions to compute the attentional scores, with the difference being that

they used the weighted sum of all previous LSTM hidden states instead of only using

the last one (the output of Conv-LSTM) for classification [15]. Their experiments

showed improved performance in comparison with plain Conv-LSTM and Bi-LSTM.

Another related approach called QualityDeepSense (See Figure 2.3 (c)) was

proposed by Yao et al. [17], which was motivated by the problem of sensor reliability

in mobile sensing. That is, while multiple sensors are deployed at the same time, this
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problem assumes that only a hidden subset of sensors is able to provide the reliable

information. The concept is slightly different from the studies above but still it can be

approached using attention mechanisms. The deep sense framework [73] they used

comprises a convolutional neural network at a lower level used to extract information

from sensors at each timestep and a Gated Recurrent Unit (GRU) network used to

learn the temporal dynamics through all timesteps at a higher level. To implement

the attention mechanism, they used two softmax functions to compute the attentional

scores specific for sensor attention at a lower level and temporal attention at a higher

level. Such combination of sensor and temporal attention is similar to [15], and led to

better performance on the HAR dataset [74] compared with the original Deepsense

framework. Through statistical analysis, they also demonstrated that the model is

able to pay less attention to the sensor set that has less sensing quality.

Studies presented above suggest that explicitly designing an attention mecha-

nism can help a model to better learn patterns in data from multiple sources (e.g.,

sensors attached to multiple anatomical points of a human body). However, we

noticed two key limitations.

• Sensor attention and temporal attention are computed on different scales of infor-

mation, i.e., sensor attention is computed with low-level input data at each single

timestep and temporal attention is computed with the output of the LSTM/GRU

layer over a period of time spanning multiple timesteps, resulting in a gap between

the two attention results. Therein, potential conflicts between the learning of two

attentional scores given the knowledge acquired at different levels may hinder

further performance improvement.

• It is problematic to compute sensor attention directly from input data per timestep,

as the data may be too limited to justify the relevance of a sensor, especially in the

context of protective behavior.

2.3.2 Skeleton-based HAR with GCN

More recently, the re-introduction of graph convolution network (GCN) [75, 76]

offers a new method for HAR. One reason for the successful use of GCN on skeleton-
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like movement data [77, 78, 79, 80, 81, 33] is that the human body can be naturally

presented as a non-directed graph. Graph representation helps a model learn the

biomechanical relationships between body segments without imposing knowledge

about specific activities-of-interest. Noticeable improvements by GCNs are seen on

several benchmark visual HAR datasets (e.g., NUS RGB+ [6] and Kinetics [70]).

For implementing GC for skeleton-like movement data, some have altered the

GC itself to facilitate a spatial-temporal operation [77, 80, 81, 33]. Others connect

the GCN and LSTM via extra layers [78] or integrate GC within the gates of each

LSTM unit [79] to enable a recurrent computation across time. The performance of

these approaches fluctuates on visual HAR benchmarks [6, 70], and they have never

been applied in the context of emotional bodily behavior across different activities.

Whilst the concept of body configuration is very much leveraged in visual HAR

studies, enabled by the full-body MoCap data therein, it is not the case for ubiquitous

wearable HAR and movement behavior detection. The wearable HAR literature has

focused on using a small set of sensors to classify activity, with each study examining

specific activities [82] or benchmark datasets [67, 65, 66]. Using a small network of

sensors also increases applicability and reduces cost in real-life deployment.

However, as in the case of CP rehabilitation, critical information may not be in

the movement of the main body segments involved, but in other body parts recruited

to protect the body [21, 23, 22, 19]. For example, Olugbade et al. [38] showed the

importance of head stiffness as protective behavior during sit-to-stand-to-sit and

reach-forward, although the head movement is not needed to perform such activities.

Psychology studies in CP point to the importance of assessing activity quantity as

well as movement quality [24].

As a result, using full-body movement data (as in the EmoPain dataset) rather

than a small set of sensors, to detect protective behavior across activities, is based

on three arguments: i) full-body movement data is beneficial to capturing detailed

movement behavior of multiple body parts for PBD across activities; ii) patients

and clinicians see benefits and opportunities that such sensing technology offers,

and are open to using it [28]; iii) full-body sensing is becoming more convenient as
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wearable sensors are becoming smaller and integrated into clothes [83]. We evaluate

the efficacy of our method on the simulation of small sensor sets in Chapter 6.

To the best of our knowledge, only one paper has investigated the use of GCN

in bodily affective expressions [33], but considers just one scenario (gait) and acted

emotional bodily expressions, a much simpler (stereotypical) problem to address. As

such, they explored GCN alone and do not need to address the variety of activity and

class imbalances of continuous data.

2.4 Addressing Challenges in Real-Life Scenarios
All the progresses witnessed above are based on an experimental setting where

first data are collected with an ideal set of sensors, and second data are usually

pre-segmented or specially treated according to different types of activity, thus the

model is trained and tested on data without the noise introduced by irrelevant or

transition activities.

Unfortunately, these settings do not always properly reflect real-life scenarios.

In real-life situations, the number of sensors that can be used is often limited and

sometimes malfunctioning. In addition, physical rehabilitation within continuous

functional activities (rather than exercise sessions) at home is usually conducted in an

unconstrained way where activities are connected with casual transition movements

and thus activities conducted are not known in advance.

Driven by the possible challenges that could exist in real-world applications of

our research, we review the literature on optimizing the sensor set and leveraging

contextual information for improving the task-of-interest that may further inspire our

work for PBD in ubiquitous and heterogeneous activity sequences. An illustrative

diagram summarizing the literature reviewed in this section is shown in Figure 2.4.

2.4.1 Optimizing the Sensor Set

As reasoned in a comprehensive study [18] about using body-worn inertial sensors,

for building a wearable HAR system, challenges considering the sensor set are: (i)

diversity of human activities as the recognition of which requires careful selection

of heterogeneous sensors that have different capabilities and characteristics, (ii)
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Figure 2.4: We review the literature toward solving two challenges that could exist in real-
life scenarios. The first is the need for a compact sensor set and how to approach
it. The second is, given more realistic and continuous data, how to improve the
performance of a detection task with context recognition.

sensor composition as sensors can be added and removed opportunistically based on

different application requirements.

For the first one, although the selection of sensor types is easier as we only

care about the movement and muscle activity of the subject, we need to consider the

sufficiency in capturing different activity types when we try to reduce the number of

sensors. For the second one, aside from the removal of sensors given the users’ or

application’s need, users normally prefer the sensor system to be compact, embedded,

and easy to operate and maintain [84]. As a result, here, we review some relevant

works on exploring more efficient sensor set for specific movement-related tasks to

acquire some ideas to aid our research.

A case study is provided in [18] that analyzed the impact of the placement of

sensors on activity recognition performance. The data for the experiments were

collected with body-worn accelerometers and gyroscopes attached to hand, lower-

arm, and upper arm. Activities performed include opening and closing a window,

drinking with a bottle, cutting with a knife etc., which are all performed by the

upper limb. Their experimental setting is depicted in Figure 2.5. Through extensive

experiments, the best result was achieved by using data collected with all the sensors

(precision of 94.1%), with a competitive result found when only using data from the
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Figure 2.5: The sensor setup and activities used to analyze the impact of sensor placements
on model performance in a study about wearable HAR. (taken from [18])

sensor attached to the hand (precision of 87.2%). The applicability of only tracking

the hand could be owed to the type of activities included in their experiments, which

all involved hand movements.

This study first provides us with a priori of conducting such a grid-search

experiment to analyze the impact of sensor placements on model performance.

Additionally, their results suggest that the direction of sensor reduction may fall into

keeping the sensor(s) of most involved body parts of the targeted activities. Then,

a question we would meet in PBD is that, since the targeted activity types involve

almost all the body parts, what strategy should we use for sensor set optimization

aside from grid search.

A more relevant study is conducted in [19] that developed an Ubi-EmoPain

dataset with a smaller set of sensors for movement-related self-efficacy (MRSE)

level detection. Unlike the EmoPain dataset that used a full-body motion capture

suit comprising 18 IMUs, the Ubi-EmoPain dataset only adopted 4 IMU sensors

placed on the head, trunk, upper leg and lower leg, with 2 sEMG sensors attached

to right trapezius and L4/5 lumbar paraspinal muscles respectively (as shown in

2.6). Thereon, experiments based on the Ubi-EmoPain dataset achieved an average

F1-score of 0.78 for pain-level recognition in three activity types.

An interesting point of this study is, the setup of sensors is discovered from

another experiment based on the EmoPain dataset. During this experiment, a com-
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Figure 2.6: The more compact sensor set designed for pain-related behavior analysis seen in
[19]: (a) The IMU sensor, SparkFun MPU9150. (b) The sEMG sensor, BITalino.
(c) The placements of sensors on a participant, where the red dots are IMUs and
blue dots are sEMG sensors. (taken from [19])

prehensive set of spatial and movement-based features for MRSE level detection was

developed. These features were all computed based on one or several body parts.

In order to see the importance of the features, they adopted the linear fixed models

and wrapper-based breadth-first tree search for feature selection. By acquiring the

frequency in which a feature appeared in the subsets returned to the selection, the

importance of each feature is computed. Instead of analyzing the sensor placements

directly, in this way they optimized the sensor setup by understanding the importance

of features related to respective body parts during the detection task. Their results

(mean F1 score of 0.79 for binary MRSE level detection) also show that sensors

placed on one side of the body are also practical for movement behavior analysis in

the context of CP rehabilitation.

However, their exploration on sensor set optimization is largely dependent on

the activity types (i.e., reach-forward and sit-to-stand), since their feature engineering

process also relied on the characteristics of the activity type. Nevertheless, their

results provide us the confidence that experiments on sensor set optimization con-



2.4. Addressing Challenges in Real-Life Scenarios 58

ducted on the existing dataset could be the important basis for designing future data

collection protocol and maybe the integrated ubiquitous systems.

In general, in order to shed light on future data collection with wearable sensors

and the establishment of a rehabilitation system, we could consider conducting

experiments exploring the sensor-set dependency on PBD in a more challenging

setting with continuous data sequences of various activity types through a grid

search on the existing data collected from 18 IMUs, and referring to the knowledge

presented in the study above to see that if movement data collected from one side of

the body is informative enough for accurate PBD.

2.4.2 Improving the Task with Context Recognition

In real-life situations, physical activity, be it functional or exercise, is conducted in

an unconstrained way, with boundaries between movements being less evident as

often one movement transitions directly into another before completing it. Therefore,

it is important to investigate if automatic detection of anomalous movement behavior

could benefit from the detection of the context in which it occurs.

Such a problem could be approached with ideas explored in studies that aim at

discovering the relevant contextual information to aid the task-of-interest. We look at

three deep learning studies published in recent years that receive a high citation, and

particularly their tasks-of-interest were conducted given the existence of different

contexts. Therein, we aim to acquire a basic idea about how the informative context

is located in their applications and what is the learning strategy used to leverage it.

In a study [85] on facial expression recognition in image or video, the contextual

information they found useful includes the background scene and the action of the

target subject or of other subjects in the scene, which were leveraged to aid the recog-

nition of emotion expressed by the target subject’s face. The method they proposed

comprises two streams of face encoding and context encoding, and fusion layers that

concatenate the two pieces of information by assigning the learned fusion weights

of them with an attention module. Their experiments on two dynamic emotion

recognition datasets showed improved performance in comparison to the variants

without directly leveraging such contextual information (accuracy improvements are
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2.91% and 3.38% on CAER [85] and AFEW [86] datasets, respectively).

While this study provides evidence of the importance of context, their method

requires cropping the facial area out of the video frames (with the help of an extra

face detector [87]) to build the input for the context recognition stream both during

training and testing. Whereas, an ideal method shall automatically understand

and extract the contextual information from the raw data simultaneously to aid the

task-of-interest in a more integrated and end-to-end manner, at least during inference.

Instead of separating the construction of context information from data related to

the task, a more unified learning framework for unconstrained person identification in

video is seen in [88], which proposes a Region Attention Network (RAN) to acquire

the useful visual context (different regions of all the person instances, e.g., face, head,

upper body, and whole body) and to integrate with the social context model (discov-

ering/understanding the event or other persons each subject attends to) via a unified

formulation for better person recognition performance (accuracy improvements are

7.39% and 6.28% on PIPA [89] and CIM [88] datasets, respectively).

With the help of RAN and the unified formulation, this method removed the

need to manually prepare the image regions to aid context recognition. Additionally,

this method explored the use of different types of context information, from low-level

local spatial regions to high-level person-to-person interactions, and the combination

of which leads to the best performance. Therefore, we can see that the ongoing

advance in modeling concept and technique contributes a lot to the better integrated

approach of using context recognition to aid the task-of-interest.

Aside from mining the visual context (e.g., surrounding objects or the dynamic

interaction between the object and the environment) that can be directly inferred from

the image or video to aid the task-of-interest, the work in [90] further discovered the

context that not directly present in data to aid object recognition in robot perception.

To help the audience understand the contextual information other than visual cues,

the authors provide two examples. First, they reason that the location of a camera

could help recognition of alligator from crocodile, since both species live at different

geographic locations on earth. Second, as a more relevant example to their method,
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they describe the conceptual context that takes the form of associations between

related concepts as: I was told to look for a banana, so I may be likely to see one

soon. To provide such conceptual context for modeling, they adopted a cognitive

architecture [91] to quantify the link (relevance) between the current situation (input

data) and the chunks of buffer contents (working memory) so that the model could

estimate what the object is not only given the visual content but also based on a

conceptual assumption of it.

Although their improved performance on object recognition was seen in ex-

periments conducted on a selected set of objects (e.g., apple, raisins, coyote, and

wire), the use of context beyond existing data is inspiring about how to search the

space for context recognition. For example, in PBD with multiple annotators and

without objective groundtruth, if the model is aware of the annotation trend among

the annotators (i.e., more agreed on protective or non-protective behaviors) at each

input sample, its prediction could be better in line with all the annotators.

The above studies on leveraging context recognition show that i) instead of

approaching the task-of-interest directly, recognition of the context present in data

could aid the main task; ii) contextual information may exist beyond existing data

but can be manually defined and provided to the modeling given our high-level

conceptual understanding of the task.

2.5 Summary and Discussion
Through this literature review, the following gaps and insights have emerged, which

will inform the studies in the following chapters.

• Past researches in psychology and clinical health have identified the existence of

protective behavior in people with CP. Specifically, protective behavior is expressed

as maladaptive strategies during functional activities by people with CP, mainly

because of their fear of movement as a cause for increased pain or injury. Protective

behavior is visually observable and provides information about the physical and

psychological capabilities of the person during functional activities. Therefore,

the detection of persistence of such behavior with respect to certain activity could
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inform and help personalize the deployment of interventions and support, like

when to send reminder of breathing, when encouragement is needed, and what

kinds of adjustment in the rehabilitation plan could be beneficial.

• For facilitating the rehabilitation of people with CP by leveraging protective

behavior analysis, past studies mainly focused on visual assessment and clinical

person-to-person interaction, which are not easily accessible to a large group of

people. Meanwhile, self-report based methods (e.g., diaries) obviously lacks the

timely intervention and suffer from the limited self-awareness in people with CP

of their movement behavior, thus are not practical for improving the engagement

of people with CP in physical rehabilitation beyond the clinic.

• Although ubiquitous technology appears as a great opportunity to facilitate self-

directed rehabilitation, the research on automatic detection of protective behavior

has received limited attention. The obvious limitation of previous studies is that

separate models were built for different types of functional activity. In addition,

detection was only per overall activity instance rather than a more fine-grained

level as necessary for providing more personalized support in a continuous manner.

While the literature in HAR provide us the evidence about the advantage of using

recurrent networks for tasks based on movement data, a lack of investigation

on data preprocessing methods especially parameters used in segmentation is

generally found in previous HAR studies, despite they have been shown to be

impactful on the model performance. Therefore, we identify the research questions

here as: i) how to enable deep learning for activity-independent PBD in a more

continuous manner? ii) how to transform the existing movement and sEMG data

into practical training and testing sets for model development? and iii) what are the

generalizable knowledge in data preprocessing we can derive from our experiments

to future datasets on PBD or relevant tasks? We explore these in Chapter 4.

• Another important gap that emerged from the literature is the lack of a model

that able to capture the variety in movement strategies adopted by people with

CP across different activity types. This is critical as it would allow personalized
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intervention at finer granularity by understanding what part of the body (spatially)

or an activity (temporally) is feared. For this point, the more recent advances in

wearable HAR studies using attention mechanism have shown a clear advantage in

learning local movement dynamics than previous vanilla models.

We argue that the relevance of a sensor (one of the selected joint angles in our case)

for PBD shall be better understood over a period (i.e., over a movement segment),

rather than at single timesteps. Whereas in a normal HAR task, activities may be

recognized based on temporally-local relationships of body positions, protective

behavior is exhibited in a dynamic process, which may necessitate a longer period

of perception before a clear judgment can be made (please refer to Chapter 4 for

details about how the duration of data frames may impact the model performance

in PBD). Especially given the variability in how people express protection from

harm or pain, the recognition of the activity type here may also benefit from a

certain period of movement process.

In chapter 5, we develop a novel learning model that combines temporal and bodily

attention mechanisms to improve the performance as well as to help capture such

variety. A further evaluation of this method on a wearable HAR dataset shows

better performances than other previous state-of-the-art methods for HAR.

• The advantage of using GCN in skeleton-based HAR, the need to model a large

set of sensors, and high variability in body configuration information in PBD all

suggest the importance of exploring the use of GCN in the context of PBD. It

also brings together research work on HAR and PBD (or in general emotional

movement behavior detection) that have surprisingly evolved separately, despite

clearly representing activity and emotional bodily expressions that co-occur in

real life with each altering the other. In chapter 6, graph convolution is employed

to model the movement data captured by multiple IMUs per timestep. Given the

success of LSTM in capturing temporal patterns of protective behavior [9, 10],

LSTM layers are added to model the temporal dynamics.

• Furthermore, improved performances are seen in works that leveraged the context
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recognition to aid the task-of-interest on the same piece of data. Aside from the

context that can be easily inferred from existing data, efforts were also made to

acquire higher-level contextual information to aid the task. As we aim to improve

PBD in more challenging settings that help examine the deployment of our method

in the real world, we wonder if recognizing the context is beneficial for our scenario

and how should we locate the contextual information in the existing data. We study

this in chapter 6 to improve PBD in continuous data of different activity types.

• Studies concerning the challenges present in real-life scenarios first showed the

applicability of using smaller number of sensors for activity recognition, pain-

level recognition, and movement-related self-efficacy estimation. However, it

remains unknown whether the reduction of number of sensors may impact the

PBD performance in continuous data, and what is the proper strategy to guide such

reduction if we want to achieve a balance between user acceptability and model

performance. In chapter 6, we look into this while modeling the continuous data.

Before reporting each of the studies carried out in this thesis, in the next chapter we

provide a description of the EmoPain dataset [12] that has been used across all studies

to evaluate the proposed approaches. We also present some of the basic techniques

that have been used for benchmarking the performance of our proposed methods.

Other datasets and techniques used to explore our questions will be presented in the

respective study chapters.



Chapter 3

Methodology

In this chapter, we present the EmoPain dataset that we use to evaluate our methods

in the thesis. We further describe the data preprocessing methods and vanilla models

that we explore in Chapter 4, which are also the important building blocks for the

experiments conducted in other chapters. Finally, we present the validation methods

and metrics that we use across the thesis.

3.1 The EmoPain Dataset
The EmoPain dataset [12] contains Inertial Measurement Unit (IMU) and surface

Electromyography (sEMG) data collected from 26 healthy and 22 Chronic Pain (CP)

participants performing physical activities selected by physiotherapists. Healthy

participants (non-athletes) were included in the dataset to capture natural idiosyn-

cratic ways of moving, rather than considering a gold standard model of activity

execution that is no longer an approach used by physiotherapists in CP physical

rehabilitation. Healthy participants were assumed to show no protective behavior in

the data collection.

Although the original dataset contains data from 22 people with CP, 4 of them

are left out because of errors in their sEMG data recordings. To avoid biasing the

model toward healthy participants, 12 healthy people are randomly selected for the

experiments conducted in this thesis. The number of healthy people is kept smaller

than the number of CP participants because some CP participants did not repeat all

the activity types. As a result, data used are from 12 healthy and 18 CP participants.
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Figure 3.1: Avatar examples made from movement data in the EmoPain dataset of a healthy
and a CP participant performing the five functional activities.

3.1.1 Building Blocks for Complex Functional Activities

Each data sequence of the dataset comprises five activities-of-interest (AoIs) in

addition to data related to the transition or short relaxing activities (i.e., standing still,

sitting still, and walking). In Chapter 4 and Chapter 5, we focus on the continuous

detection within each individual AoI instance, where the transition data is left out

through manual pre-segmentation. In Chapter 6, we move to continuous detection

within the full data sequence of activities, leaving out the last instance of walking.

The five AoIs are bend-down, one-leg-stand, sit-to-stand, stand-to-sit, and reach-

forward. Figure 3.1 shows the avatars of a healthy and a CP participants performing

these five activities. The AoIs were selected by physiotherapists in the development

of the EmoPain dataset for two reasons. First, they involve movements that people

with CP tend to avoid or be very cautious about, as they are perceived as painful or

injury-inducing. In addition, they comprise basic movements that occur in a variety

of more complex daily functional activities: a person may need to bend to load the

dishwasher or tie the shoes, or a person may reach forward to pick up something

from a high shelf or clean the trunk of their car, and stand/balance on one leg to

climb stairs or even walk.

Given that the activities used in this work can be considered as building blocks

for more complex functional activities, experiments conducted on this dataset should

shed some light into future work using other relevant datasets that build on these

five basic activities in the context of protective behavior detection (PBD) for CP

rehabilitation or in general affect-influenced movement behavior detection.

Participants were asked to perform two trials of the sequence of activities with
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two levels of difficulty. In each trial, activities were repeated three times, although

some CP participants skipped a few repetitions perceived as too demanding (e.g.,

bend-down).

During the normal trial, participants were free to perform the activity as they

pleased, e.g., they could stand on their preferred leg and start the activity at any

time they preferred. For the difficult trial, participants were asked to start on a

prompt from the experimenter, and to carry a 2 kg weight with both hands or in

each hand during reach-forward and bend-down, respectively. These more difficult

versions of the same activities simulated real life situations where a person is under

social pressure to move or is carrying bags or other objects. Again, these are often

suggested by physiotherapists to help people with CP gain confidence in moving

even outside the home [31].

As a result, we treat two trials of activities performed by one participant as two

different sequence (a typical sequence is shown in Figure 3.1.

For data we have access to, 5 healthy people and 11 people with CP did activities

at both levels of difficulty. Therefore, we have 17 sequences (7+5×2) from the healthy

and 29 sequences (7+11×2) from people with CP, which lead to 46 sequences in

total. Each of these sequences contains all the selected activities (repeated at least

once) performed by one participant at one level of difficulty.

3.1.2 Movement and Muscle Activity Data

A wearable motion capture suit named MetaMotion IGS-190 [92] comprising 18

IMUs was used for the data collection. As provided in the EmoPain dataset [12], at

each timestep, 3D coordinates of 26 body joints were calculated from the raw data

stored in a Biovision Hierarchy (BVH) format. Within the BVH file, the metadata

includes the skeleton proportion of the participant (e.g. the length of limbs) and

position on the body that each sensor was attached to (Figure 3.2 (a)). Using a

Matlab MoCap toolbox [93], the approximate position of 26 body joints in the 3D

space was estimated based on the metadata, the gyroscope, and accelerometer data.

An illustration of such transformation from IMUs to positional triplets of body joints

is shown in Figure 3.2 (b).
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Figure 3.2: Illustrations of a) the placement of 18 IMUs, b) the calculation of 26 sets of 3D
joint coordinates, c) the skeleton graph showing the connection of 26 anatomical
joints, where each node represents a human body joint, and (d) the placements
of the 4 sEMG sensors on trapezius (3, 4) and L4/5 lumbar paraspinal (1, 2)
muscles, taken from [12].

It should be noted that data collected from the participants’ feet (node number

5, 6, 10, and 11 seen in Figure 3.2 (c)) are noisy and hence not used in this thesis.

This was due to interference with the electric cables placed under the floor where the

data collection took place.

The muscle activity was recorded with 4 BTS FreeEMG300 wireless sEMG

sensors placed on the trapezius and L4/5 lumbar paraspinal muscles, as shown in

Figure 3.2 (d). Those sEMG sensors were operating at 1kHz. The position of the

sEMG sensors was based on the literature [94] that shows altered activations of

the lumbar paraspinal muscles in people with chronic low back pain due to fear of

movement. Similarly, the trapezius muscles were selected as people tends to contract
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Figure 3.3: Avatars representing the temporal sequences of movement and sEMG data of
healthy and CP participants during reach-forward (left) and stand-to-sit and
sit-to-stand (right) in the EmoPain dataset. The sEMG signal plotted for each
avatar sequence is the average upper envelope of rectified sEMG data collected
from two sensors on the lower back.

them when anxious. For the muscle activity diagrams in Figure 3.3, the value was

computed as the average upper envelope of rectified sEMG data collected from the

two sensors attached to the lower back.

Examples of protective and non-protective behavior samples from the EmoPain

dataset are shown in Figure 3.3. These avatars were built directly from participants’

movement data and represent instances of activity from the dataset, even though

the length of each sequence is not representative of the real duration. Continuous

animations of C16D [95] and P14N [96] are available.

As shown in Figure 3.3 (left), for reach-forward, differences between the healthy

and CP participants exist in the stretching range and also the different strategies,

with the latter simply raising the arms but not bending forward. For C16D, we

can see an expected curve of the sEMG data as the lower-back muscles activate to

hold the stretching forward position and then relax when returning to the standing

position. Instead, for P14N, the activation/deactivation curve is missing with a

high variation across the movement, despite the person was not even attempt to

stretch forward and only brings the arms up. Such suggest the fear of this participant

in preparing for the movement, which continues to the end. We can also observe

another strategy from participant P14N who is keeping the feet closer together during

reach-forward that makes the bending more difficult. Often, people with CP are
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unaware of avoiding facilitating movements/postures, as their attention is on pain

rather than proprioceptive feedback.

During the stand-to-sit-to-stand, there is no much use of the lower-back muscles,

but this expected pattern is not present in P14N where again the muscles remain

active, possibly due to fear despite the lack of trunk bending. These are just examples

of strategies used by people with CP, as each person personalizes the strategies to

his/her perceived physical capabilities and own understanding of what could be a

dangerous movement.

3.1.3 Low-Level Feature Computation

Aside from directly using the raw coordinates of each body joint, we use the 13 low-

level features provided in the dataset as suggested in Aung et al. [12], corresponding

to 13 joint angles in 3D space calculated based on the 26 anatomical joints. In

addition, we also use 13 ‘energy’ features provided in the dataset that are computed

using the square of the angular velocities of each angle. The description of the 13

joint angles is shown in 3.5.

The dataset also provides the muscle activities captured from four back muscle

groups in the form of the rectified sEMG data. We therefore have 30 features in total

for each sample: 13 joint angles, 13 energies, and 4 rectified sEMG signals from the

original dataset. To maintain the dimension order of the data, the feature matrix is

formed as Figure 3.4.

As shallower models are used in Chapter 4 and Chapter 5, to aid the representa-

tion learning by reducing the number of dimensions of the original data comprising

many coordinates (22×3 = 66), we use these low-level features (13+13+4 = 30)

as the input of our model. For the study presented in Chapter 6, as motivated by the

use of Graph Convolutional Network (GCN), we turn to using the raw coordinates

Figure 3.4: The feature matrix at a single timestep t. A1 to A13 are the inner angles, E1 to
E13 are the energies and sEMG1 to sEMG4 are the rectified sEMG data.
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Figure 3.5: Description of the 13 joint angles. Data collected from the participants’ feet are
noisy and hence not used in this thesis.

of each body joint as the input directly, as the structure of the network tolerates the

high-dimensional information about the body configuration.

3.1.4 Data Annotation and Ground Truth

Multiple annotations of data were carried out using participants’ self-reports and

expert annotations based on videos of trials. In this thesis, we focus on expert

annotations of protective behavior, while we also know that reported pain levels are

not directed related to presence or absence of pain behavior [22].

Two physiotherapists and two psychologists working with clinical populations

were recruited to rate each data sequence by viewing footage from the on-site camera.

For each type of protective behavior (e.g., guarding/stiffness, bracing/support, and

rubbing/stimulating) definition, the experts marked the timesteps where the specific

behavior started and ended. Thus, we have the label of different types of protective

behavior per timestep.

However, rather than discriminating between different types of protective be-

havior, we treat them as a unique class referred to as protective behavior. The reason

is that the number of instances for each behavior is too limited to investigate the

use of deep learning models. In addition, the discrimination that matters in the

first place for providing personalized feedback is whether protective behavior has
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Figure 3.6: The visualization of the binary coding for protective behavior by 4 expert raters.
Different types of protective behavior are treated as the same unique class.

occurred. With a larger dataset, a finer analysis could be used to further personalize

the feedback and intervention, but it is outside the scope of this thesis.

By merging the annotation of different types of protective behavior, each data

sample is associated with 4 binary labels (one from each rather: where 1 stands

for the presence of a protective behavior and 0 stands for absence of such behavior

according to the specific rater). Figure 3.6 presents a visualization of the coding

result of a data sequence of one CP participant. We can see that, a certain level of

disagreement exists in the annotations on protective behavior.

Given the disagreements between different annotators, we need to provide the

model suitable labels for training and testing. The majority-voting approach is

the typical approach used in affective computing [48]. Hence, together with the

segmentation using a sliding window, we define the ground truth of each segmented

frame as protective if at least two raters each found at least 50% of the samples

within it to be protective. This method is used by default to define the ground truth

for the EmoPain dataset in this thesis.

3.2 Vanilla Neural Networks

This section describes the vanilla neural networks that we use for comparison or as

the building block in this thesis. These methods are commonly used in the literature

[13, 60, 14, 62] on activity recognition and behavior detection with sensor-based

movement data.
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3.2.1 Stacked-LSTM and Dual-Stream LSTM Networks

Unlike the convolutional neural network (CNN), which was usually adopted for spa-

tial feature extraction in image and video and recently for wearable HAR, recurrent

neural network (RNN) showed better capability for the learning from time-dependent

data sequences. Previous studies [13, 60] show that RNNs, particularly LSTM-

involved networks, outperform other network architectures like CNN on processing

data sequences collected with wearable sensors.

A forward-passing RNN structure is shown in Figure 3.7. The input to it

is a temporal sequence, for which the network computes state information and

passes forward along the temporal direction. The core of an RNN architecture is

the processing unit, which is an LSTM unit for LSTM networks. The LSTM unit

[97] solved the vanishing gradient problem that traditional RNN had faced in back

propagation over a long temporal sequence. An LSTM unit updates its internal states

based on current input and previously stored information [97]. The LSTM unit that

we use in this work is the vanilla variant without peephole connection [98].

A typical and simple method to manage multimodal input (i.e., body movement

and muscle activity data in our case) is to concatenate the multimodal data at the

input level, as done by default in our stacked-LSTM architecture as shown in Figure

3.7. In addition, we consider another typical approach that is often used in affective

computing [19, 38], where a late-fusion strategy is used to first model the data of two

modalities separately before fusing the features learned from them at a later stage for

final prediction. We refer to this method as Dual-stream LSTM, as shown in Figure

 LSTMLSTMLSTM 

  LSTMLSTMLSTM 

 LSTMLSTMLSTM 

( )| TP protective X

 

Figure 3.7: The typical recurrent neural network structure using LSTM unit.
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Figure 3.8: The Dual-stream LSTM network, where movement and sEMG data are pro-
cessed separately. Each LSTM block is stacked-LSTM that without a classifier.

3.8. In the figure, the data of each modality is processed by a stacked-LSTM network

that without a classifier, and the outputs from both modalities are concatenated along

the feature dimension for final prediction.

For both the stacked-LSTM and Dual-stream LSTM, the computation happens

within the LSTM unit is the same. At timestep t, the input to the corresponding

LSTM unit comprises the current input data Xt , previous hidden state Ht−1, and

the previous cell state Ct−1, while the output comprises the current hidden state Ht

and cell state Ct . By using this form, the output of at each timestep is based on the

previously consecutive knowledge acquired.

The states are updated with an Input Gate with output it , a Forget Gate with

output ft , an Output Gate with output ot , and a Cell Gate with output c̃t . The

computation within a LSTM unit at timestep t can be written as

ϕt = σ
(
WxϕXt +WhϕHt−1 +bϕ

)
, (3.1)

c̃t = tanh(WxcXt +WhcHt−1 +bc) , (3.2)

where ϕt ∈ {it , ft ,ot}, W(·) and b(·) are the weight matrix and bias vector, respectively.

σ (·) is the sigmoid activation. Then, the output of a LSTM unit is computed as

Ct = ft ⊙Ct−1 + it ⊙ c̃t , (3.3)

Ht = ot ⊙ tanh(Ct), (3.4)
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where ⊙ denotes the Hadamard product. The processing at the next timestep t +1

would take the current output Ct and Ht to iterate with the same computation

mentioned above.

As we evaluate the parameter impact of the data segmentation, the length of the

input layer is adjusted to the length of the input data frame created by each different

segmentation size.

Using the output at the last timestep of the last LSTM layer HT in a fully-

connected softmax layer, the computation of class probability P = [p1, ..., pK] where

K denotes the number of classes and the final one-hot label prediction Y can be

written as

P = so f tmax(WHHT +bH), (3.5)

Y = arg max
[1···K]

(P), (3.6)

where WH and bH are the weight matrix and bias vector of the softmax layer.

For the Dual-stream LSTM network, the last outputs of last LSTM layers of

both modality streams (i.e., Hmovement
t and Hemg

t for the movement and sEMG streams

respectively) are concatenated and processed by the fully-connected softmax layer

to repeat the computation written in Equation 3.5-3.6 for prediction.

3.2.2 Relevant Vanilla Models

Aside from LSTM networks, a comparison with the following methods that have

been used in movement-based tasks is additionally conducted in Chapter 4.

• CNN [62]. The 3-layer CNN architecture used in this thesis is implemented

according to [62], while the classification result is produced by a softmax layer at

the final stage instead of using an extra SVM classifier. The convolutional kernel

size is 1×10, with max pooling size set to 1×2 and number of feature maps to 10.

• ConvLSTM [14].The architecture is the same as what was used in [14]. The size

of the convolutional kernel is set to 1×10, while max pooling size is 1×2 and the

number of feature maps in convolutional layers and hidden units in LSTM layers

is set to 10 and 32 respectively.
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• Bi-LSTM [13]. As a variant of forward-passing LSTM network, bi-LSTM network

utilizes context information in both the ‘past’ and the ‘future’ to compute the output

at each timestep. We implement the bi-LSTM according to [13]. The hidden units

in each LSTM layer is set to 16.

• Random Forest [12, 29]. We use a random forest (RF) algorithm with 30 trees

for frame-based detection, which is then referred to as RF-frame. We extract

length-fixed feature vectors for each frame as the input to the RF algorithm. The

feature vectors computed from all the frames are further divided into training and

test sets based on the given validation method. The features computed comprises

the range of the joint angles, the mean of joint acceleration value, and the mean of

rectified sEMG value, which were used in [29]. The dimension of the input feature

vector was 30.

3.3 Validation Methods and Metrics
Three different validation methods are included to evaluate the model performance

of the approaches in the following chapters.

First, a 6-fold leave-some-subjects-out (LSSO) cross-validation is included,

where at each fold data of 5 out of the 30 subjects are left out and used for testing.

To balance the number of CP and healthy participants, we ensure that each test fold

contains data from 3 CP and 2 healthy participants, respectively. Such validation is

similar to the hold-out validation conducted in wearable HAR.

Second, the standard leave-one-subject-out (LOSO) cross-validation is applied

to further demonstrate the generalization capabilities of a model to unseen individuals.

Here should be noted that, as the model achieves nearly 100% accuracies for all the

healthy participants during LOSO that possibly due to the imbalanced distribution

of non-protective (majority) and protective (minority) behavior samples, we report

the average LOSO performance across all the participants in Chapter 4 and Chapter

5, while the average LOSO result achieved on the 18 patients’ folds are reported in

Chapter 6 given the obvious imbalance between the non-protective and protective

behavior classes.
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Finally, we envision that the use of our models will be in the context of personal

rehabilitation where the model can be tailored to the same individual, so a cross-

validation by leaving some instances out (LSIO) is also used. Therein, data (not from

the same instance) from a participant could appear both in training and test sets.

Differently from medical applications for diagnoses, detections of presence

and absence of protective behavior in chronic pain rehabilitation are both critical

for the management of chronic pain, as they call for different types of support.

In fact, physiotherapists operate on observations of both presence and absence of

protective behavior to help patients adapt strategies to cope with bad and good days

and gradually build a sense of capability [99]. Therein, advices and opportunities

for the patient are provided accordingly [26, 38, 24, 25]. Based on these literatures

and a discussion with physiotherapists, a system should detect both to provide the

appropriate support and advices. For example, when the absence of protective

behavior is frequently detected, the system may help the user avoid overdoing by

reminding to take breaks, a critical problem in chronic pain management. Instead,

when protective behavior is frequently detected, the system would provide feedback

that help increase awareness of capabilities of the user.

Given that in this thesis we treat PBD as a binary classification problem where

the detection of both protective and non-protective behavior is similarly important,

we report the Macro F1 score as a metric that considers the performance at each

class. The Macro F1 Score (Mac.F1) is computed as:

Fm =
2
|c|∑c

prec × recallc
prec + recallc

, (3.7)

where prec and recallc is the precision and recall ratio of class c. Moreover, for

completeness, the accuracy (Acc), mean precision (Pre), mean recall (Re), and

confusion matrices are also used in the following chapters.

The macro F1 score and accuracy with a fixed threshold are the only metrics used

in the first two study chapters (i.e., Chapter 4 and Chapter 5), since the imbalance

between the two classes is moderate as we manually removed the transition parts

of the data sequences. The class imbalance increases noticeably in Chapter 6 as we
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move to using continuous data sequences, thus we further used another metric of

Precision-Recall Area Under the Curve (PR-AUC). Still, we consider the importance

of both classes, thus confusion matrices and macro F1 scores are reported.

To further understand how different architectures and parameters compare with

each other, we also include statistical tests (Friedman test, post-hoc Wilcoxon Signed

Rank test, and inter-rater correlation) on the LOSO results (F1 scores for all the

LOSO folds). The statistical tests help demonstrate the generalizable significance

of the results from our experiments. The 95% confidence interval is provided to

each macro F1 score and average accuracy by using the t statistics computed from

F1 scores and accuracies of all the LOSO or cross-validation folds of each method

in the experiment, respectively. Repeated-Measures ANOVA and post-hoc t test

are not used, given that the test of normality is not passed given our LOSO or

cross-validation results, i.e., we find p < 0.05 in our Shapiro-Wilk tests.

In the next three chapters we report the main studies of this thesis followed by a

discussion of the contributions this thesis makes to the relevant fields.



Chapter 4

Exploring Vanilla Models and Data

Preprocessing Methods

In this chapter, we aim to answer the first research question that is how deep learning

could be leveraged to conduct activity-independent protective behavior detection

(PBD). We approach this question by exploring and evaluating several fundamental

factors of the research on this topic.

First, we verify the advantage of recurrent neural networks in PBD by comparing

different types of vanilla neural networks, which have been commonly used in the

previous literature on activity recognition. Second, we explore the impact of data

preprocessing methods, namely data segmentation and augmentation methods, on

model performance of PBD. In particular, we explore the relationship between the

use of the different techniques with respect to the nature of different movement types

critical to chronic pain (CP) self-directed rehabilitation. The aim is not only to set

basic building blocks for the main studies of this thesis, but also to start to understand

how the findings emerging from this study could extend beyond our dataset.

In summary, this chapter has the following contributions.

• We extend the state-of-the-art by showing the feasibility of activity-independent

PBD using deep learning across and in a continuous manner within pre-segmented

activity instances. This moves the field one step closer to being able to continuously

detect pain-related behavior in everyday life without knowing the type of activity

in advance.In addition, it allows knowing at what stage of the activity the behavior



4.1. Data Preprocessing Methods 79

Figure 4.1: Illustration of the different references of data at various scales.

appears to better inform personalized interventions.

• A set of data augmentation methods and their combinations is investigated for

dealing with the limited size of the existing dataset. An analysis and discussion of

these methods shed light into how each of them could contribute to PBD beyond

our dataset.

• The impact of data segmentation parameters on detection performance is also ana-

lyzed. Despite the optimal segmentation window length for PBD being dependent

on the activity type, we provide a set of criteria to identify values for this parameter

that work across different activities, showing how our approach could generalize

to other datasets for PBD and in general affective movement behavior detection.

4.1 Data Preprocessing Methods
In this section, we describe the data pre-processing methods, namely segmentation

and augmentation, that are first evaluated in this chapter as well as commonly adopted

in this thesis to enable the use of deep learning models.

To avoid ambiguity, we clarify that: ‘sequence’ refers to the data sequence

containing all the activities performed one after the other by a subject during one

trial; ‘instance’ stands for data of a single activity execution; ‘frame’ is a set of

consecutive timesteps extracted from the sequence; ‘sample’ is a single timestep

(for our case is at 1/60 second as the sampling rate is 60Hz), and each sample is

associated to a vector containing the movement and sEMG data. An illustration of

such naming is shown in Figure 4.1.
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4.1.1 Data Sequence Segmentation with Sliding Window

Given the temporal nature of movement data, we use a sliding window segmentation

approach [18] to create the input for the neural networks. Therein, two situations are

considered. In the first two studies of this thesis, we focus on recognizing protective

behavior within activity instances where the transitions are manually left out, before

going to conduct continuous detection with the long data sequence in the last study.

Therefore, we first apply the segmentation within the activity instances of the

same activity type. Figure 4.2 gives an illustration of the segmentation conducted

within each activity type. Note that the model does not take the type of activity as

an input in the modeling process, but instead aims at generalizing PBD across all

activity types.

In such segmentation within activity instances, one issue is to handle edge cases,

i.e., how to pad data when the sliding window is at the end of an activity area. We

explore three typical ways of handling such case in the context of sensor data with

an aim to understand their effect on PBD.

• Zero-padding, which is to pad the frame with zeroes. This is a typical approach

used in activity recognition tasks of computer vision literature. [100, 101].

• Last-padding, which is to use the last sample of the current activity instance and

copy it to the frame until the number of samples equal to the window length.

• Next-padding, which is to directly use the samples following the activity instance

within the same data sequence for padding, as a way to simulate continuous natural

Figure 4.2: The sliding-window segmentation applied in the first two studies is conducted
separately for each activity type, where different padding methods are considered
for each window sliding outside an activity instance. t is the starting timestep of
a window, S is the sliding step, W is the window length.
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transition between activities.

In this chapter, we first compare these different padding methods. Then, we

analyze the impact of different sliding window lengths on the model performance

per activity type and across all the activity types.

4.1.2 Data Augmentation

Data augmentation is critical for mitigating the risk of over-fitting that rises when

applying deep learning on smaller datasets. To address the limited data size and

more generally the difficulty of capturing naturalistic dataset from people of special

groups, we investigate the suitability of data augmentation techniques for PBD.

Following the progress seen in wearable HAR literature [61] about using data

augmentation to improve the model performance, we use the following augmentation

methods that least influence the temporal information of movement data.

• Reversing, which is to reuse data in a temporally reversed direction. This method

is used as some activities can be thought of mirror reflections, e.g. stand to sit and

sit to stand.

• Jittering [61], which is to simulate the signal noise that may exist during data

capturing. One way to use jittering in our thesis is to create the normal Gaussian

noise with three standard deviations of 0.05, 0.1, 0.15 and globally add them to

the original data respectively, to create three extra training sets.

• Cropping [61], which is to simulate unexpected data loss. One way to apply

cropping in our thesis is to randomly set data at random timesteps for random joint

(angles) to 0 with selection probabilities of 5%, 10% and 15% respectively, to

create another three training sets.

Note, the three methods do not change the temporal consistency (in the forward

or backward direction) of data to a noticeable degree. Therefore, the labels assigned

to the samples at their original temporal locations stay unchanged.

In this chapter, we compare these data augmentation methods on the model per-

formance. The method that performs better will then be adopted for the experiments

conducted in other chapters.
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4.2 Comparison of Vanilla Neural Networks
In this section, we first present the implementation and training details of neural

networks involved in this first comparison experiment. Then, we report the results

achieved by comparing stacked-LSTM and Dual-stream LSTM networks, which

have shown better performances in previous wearable HAR literature, with the other

vanilla neural networks as described in Chapter 3.

4.2.1 Implementation Details

To enable a reasonable comparison, given the same training and testing sets, we run

a simple grid search on the main hyperparameters (e.g., number of layers, number of

hidden units, and kernel size) for each compared neural network.

Here, we take the stacked-LSTM as an example to show the general process.

When comparing the number of layers, the number of hidden units in each layer is

set to 32 while the number of layers is set to 3 when comparing the number of hidden

units. Each LSTM layer is followed by a Dropout layer with a probability of 0.5.

Results of the searching process for the stacked-LSTM are shown in Figure 4.3.

As we can see from the figure, increasing the number of network layers (from 3

layers) or hidden units (from 32 units) leads to a decrease in performance, possibly

because they introduce more trainable parameters that lead to over-fitting given the

limited size of training data.

For the Dual-stream LSTM, three LSTM layers are used in each stream while

the number of hidden units of each layer in the movement stream and sEMG stream

is set to 24 and 8 respectively, and each LSTM layer is also followed by a Dropout

layer with a probability of 0.5. The weights for loss updating of both streams are set

to be equal.

All the neural networks used in our experiments employ the Adam optimizer

[102] to update the weight, and the learning rate is set to be 1e− 3. For all the

neural network methods, the mini-batch size is set to 20. We implement all models

with the TensorFlow deep learning library. The hardware used is a PC with Intel

i7 8700K CPU and Nvidia RTX 1080 Ti GPU, while the average training time of

the stacked-LSTM is around 20ms per iteration/epoch. For comparison, we use
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Figure 4.3: Results of the search on the hyperparameters (number of layers and number of
hidden units in each layer) of stacked-LSTM.

CNN, convolutional LSTM network (Conv-LSTM), and bidirectional LSTM network

(bi-LSTM) [62, 14, 13] described in Chapter 3.

In addition to the above neural network methods, we added to the comparison

set the method using Random Forest (RF) as it was used in [12, 29] to model

guarding behavior (one category of protective behavior). For the RF method, angle

and velocity features (i.e., the range of the joint angles, the mean of joint acceleration

value, and the mean of rectified sEMG value) are extracted from the 3s frames, thus

we refer to this method as RF-frame in our experiment. It should be noted that,

differently from [12, 29], we perform the modeling across different activity types,

rather than a model for each activity type. This is critical as only in rehabilitation

exercise sessions the activity type is known in advance.

If not mentioned, the default segmentation uses window length of 3s long and

75% overlapping together with zero-padding, while the default augmentation method

combines jittering and cropping, as learned from the experiments in section 4.3.1.

The number of frames after using such a combination of augmentation methods is

increased from ∼3k to ∼21k. Vanilla majority voting described in Chapter 3 are

applied to generate the binary ground truth labels (protective vs. non-protective

based on a 50% threshold) in this first part of the study for all the compared methods.
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4.2.2 Results

The results obtained in the first comparison experiment are reported in Table 4.1.

We can see that the stacked-LSTM achieves the best average Macro F1 scores of

0.82, 0.74 in LOSO and LSIO cross validations, respectively, while the Dual-stream

LSTM achieves the best average Macro F1 score of 0.74 in LSSO cross validation.

We performed a Friedman test to compare the LOSO results (macro F1 scores)

between these methods. The results show statistically significant difference in per-

formances between the methods: X 2(5) = 30.474, p < 0.001. Further, post-hoc

Wilcoxon Signed Rank test with Bonferroni corrections (see Table 4.1) show that

the stacked-LSTM performs significantly better than the RF-frame (p = 0.025) and

CNN (p < 0.001). It also shows that Dual-stream LSTM, bi-LSTM, and ConvLSTM

are not significantly different from stacked-LSTM (at significance level p = 0.05).

Furthermore, Dual-stream LSTM (p = 0.006) and bi-LSTM (p = 0.032) are signifi-

cantly better than CNN. Conv-LSTM does not significantly differ in performance

with any of the other methods.

Previous literature on PBD (e.g., [29, 12]) shown the importance of feature

selection for the modeling within a specific activity type using the traditional ma-

chine learning technique like Random Forest. The performance of such a method

dropped to a macro F1 score of 0.67 when modeling within data that comprise

different activity types. In addition, a more comprehensive approach using hand-

crafted feature is seen in [19] that conducted pain level recognition using the same

dataset, where interesting performances were only achieved using different sets of

Table 4.1: Comparison Results using the Leave-Some-Subjects-Out (LSSO), Leave-One-
Subject-Out (LOSO) and Leave-Some-Instances-Out (LSIO) cross-validation
Methods. Fm=Macro F1 score, Re=Recall, Pre=Precision. 95% confidence
intervals are added to the LOSO results.

Method LSSO LOSO LSIO

Acc Fm Re Pre Acc Fm Re Pre
p-value against
stacked-LSTM

(< 0.05)
Acc Fm Re Pre

RF-frame 0.62 0.55 0.57 0.6 0.73±0.095 0.67±0.113 0.67 0.74 0.025 0.59 0.54 0.55 0.56
CNN 0.63 0.54 0.56 0.59 0.78±0.081 0.70±0.081 0.69 0.80 <0.001 0.67 0.61 0.61 0.67
ConvLSTM 0.62 0.61 0.61 0.61 0.81±0.075 0.77±0.100 0.76 0.80 0.172 0.66 0.65 0.67 0.66
bi-LSTM 0.71 0.69 0.69 0.70 0.81±0.055 0.79±0.065 0.79 0.80 >0.05 0.73 0.72 0.73 0.72
Dual-stream LSTM 0.75 0.74 0.75 0.74 0.82±0.052 0.80±0.060 0.80 0.79 >0.05 0.73 0.72 0.72 0.72
Stacked-LSTM 0.74 0.73 0.74 0.73 0.87±0.049 0.82±0.069 0.83 0.81 - 0.75 0.74 0.75 0.74
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engineered feature per activity type. Similarly, in [103], the author demonstrates

that relevance of feature sets are critically different towards different activity types,

thus the method needs to select the proper feature set to function well for each

activity type. On the basis of these findings showing that the hand-crafted features

are activity-dependent when using standard machine learning techniques (e.g., SVM

and RF), our investigation shifted to understanding if the use of deep learning and

low-level features would allow for building activity-independent PBD models.

These results suggest that stacked-LSTM does indeed provide overall better

performance, and that recurrent models like LSTM-involved networks are better

at processing movement and sEMG data for PBD. Interestingly, the Conv-LSTM

performs slightly better than CNN, possibly because it is also designed to better

capture the temporal information that characterize movement and sEMG data using

its recurrent layers with LSTM.

For the 18 folds in LOSO cross-validation where testing subjects are people

with CP, we further compute a two-way mixed, absolute agreement, intra-class

correlation (ICC) to compare the level of agreement between the ground truth

(majority-voted from labels of expert raters) and the output of stacked-LSTM with

the level of agreement between the four expert raters. The ICC is a standard method

for computing inter-rater agreement [104]. The absolute agreement ICC, which we

use, measures strict agreement, rather than the more liberal similarity between rank

order of the alternative ‘consensus ICC’ [105]. A two-way mixed model is used, as

the existing raters are the only interested.

We find ICC = 0.215 (single measures) and 0.523 (average measures) with

p = 4.3×10−130 between the raters, and ICC=0.568 (single measures) and 0.724

(average measures) with p= 3.1×10−159 between the stacked-LSTM and the ground

truth obtained from the labels of these raters. This finding suggests that stacked-

LSTM reaches a moderate level of agreement (with ICC between 0.5 and 0.75 [106])

with the average expert rater on PBD across different types of activity. The agreement

is also higher than that between the raters, although this may be explained by the fact

that unlike the raters, whose ratings were based on their independent experiences
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Figure 4.4: A confusion matrix of the performance of stacked-LSTM in LOSO cross valida-
tion. NP=non-protective; P=protective.

and background (even if they did have discussions to resolve rating disagreements),

the model’s training is solely based on the average rater’s labelling.

The confusion matrix for the result achieved by stacked-LSTM in LOSO cross-

validation is given in Figure 4.4. We can notice from the figure that protective

behavior is detected in some healthy participants’ data. From an inspection of the

recorded videos for these participants as well as checking with previous raters and

looking at movement animations of them, we identify various reasons for possible

misclassifications: i) some healthy participants were not familiar with the activity

or instructions from the experimenter and so hesitated during the execution of the

movement (i.e., often looking up at the experimenter while awaiting a confirmation

of their execution); and ii) some were not able to conduct specific activities normally

like reaching forward due to other physical conditions, e.g. obesity, rather than CP.

4.3 Evaluation of Data Preprocessing Methods
The results reported in the previous section show that activity-independent PBD

becomes more feasible when using LSTM-based architectures, and can be carried

out continuously within each type of activity instances. While neural networks

achieve interesting performances in this task, the process of selecting the practical

parameters of data preprocessing methods were not explored in more depth yet.

In this section, we analyze three critical aspects of data preprocessing (data

augmentation, segmentation, and ground truth definition) to better understand how
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they may affect PBD within activity types that build on the ones presented in the

EmoPain dataset.

We adopt the stacked-LSTM (3 layers each with 32 hidden units) with the

default segmentation (3s long, 75% overlapping and zero-padding) and augmentation

(jittering and cropping) methods reported above as the baseline approach while

systematically varying each of these methods and parameters.

4.3.1 Comparison of Augmentation Methods

In Chapter 3, we have described three data augmentation methods, namely reversing,

jittering, and cropping. Here, we conduct a comparison experiment between them to

show the effectiveness and failure of using any of these data augmentation in PBD.

For the augmentation with jittering method alone, to maintain a similar size

of the training data with combined augmentation, we create six extra sets of data

by applying standard deviations of 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3 to the original

training set. We increase the deviation from a smaller value of 0.05 with a maximum

of 0.3 as to avoid disturbing data too much.

For the same purpose, to use the augmentation with cropping method alone,

selection probabilities of 5%, 10%, 15%, 20%, 25%, 30% are used. It should be

noted that the augmentation is only applied to the training data. The testing data

remain untouched.

In addition to each of the three augmentation methods, a combination of the

jittering and cropping methods is also assessed, as they similarly introduce noises to

data without changing its temporal order. Performances are also measured on the

original data without augmentation. This led to five test approaches, with the results

reported in Table 4.2.

A Friedman test was carried out to compare the five test approaches on the

LOSO Macro F1 scores. The results showed significant difference in performance

between the these methods (X 2(4) = 22.196, p < 0.001). The p-values from the

post-hoc Wilcoxon Signed Rank test with Bonferroni corrections are also reported.

Although with a larger training set than that without augmentation, the aug-

mented training set with reversing method leads to the worst performance and is the
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Table 4.2: PBD performances (Mac.F1) and p-values of the post-hoc Wilcoxon Signed Rank
test with Bonferroni corrections using the LOSO results under different Data
augmentation methods. 95% confidence intervals are added to the LOSO results.

Augmentation method
Training

Size LOSO LSSO LSIO
p-value against

Jittering + Cropping (< 0.05)
Original ∼3k 0.66±0.110 0.55 0.62 <0.001
Reversing ∼6k 0.40±0.086 0.52 0.53 <0.001
Jittering ∼21k 0.69±0.107 0.63 0.67 0.019
Cropping ∼21k 0.66±0.109 0.68 0.68 0.004
Jittering+cropping ∼21k 0.82±0.069 0.73 0.72 -

only augmentation method (of the four compared) that has lower performance than

the baseline without augmentation. This is possibly due to the fact that the reversing

method alters the temporal dynamics that characterize how protective behavior is

exhibited during an activity. Although all activities included in the dataset are cyclic,

e.g. ‘stand-to-sit vs. sit-to-stand’ or ‘reach-forward (and returning)’, the expression

of protective behavior is quite different between such pairs. For instance, in sitting

down people with CP tend to bend their trunk at the beginning to reach for the seat

for support before descending, whereas in standing up, they avoid bending the trunk

due to the fear of pain and mainly push up using their legs and arms.

In comparison with the reversing method, jittering or cropping augmentation do

not noticeably affect the temporal order of the data. Further, they may help simulate

real-life situations of signal noise and accidental data loss, beneficial for developing

a model to be deployed in daily life. Given the similar size of training data, the

combination of jittering and cropping methods lead to better performances than

using each of them alone. This could be due to the fact that, when each of such

augmentation method is used alone to create the same training size as the combined

method, the required higher standard deviation in jittering or selection probability in

cropping could disturb the training.

4.3.2 Comparison of Padding Methods

In Chapter 3, we have introduced three padding methods, namely zero-padding,

last-padding and next-padding. Differently from zero-padding, in the last-padding

approach the last sample of the current activity instance is used to pad the window

that slides out of the instance; whereas in next-padding, the samples at the following
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Table 4.3: PBD performances (Mac.F1) and p-values of the post-hoc Wilcoxon Signed Rank
test with Bonferroni corrections using the LOSO results under three padding
methods. 95% confidence intervals are added to the LOSO results.

Padding method LOSO LSSO LSIO
p-value against

Next-padding (< 0.05)
p-value against

zero-padding (< 0.05)
Last-padding 0.72±0.095 0.69 0.66 0.138 0.028
Next-padding 0.79±0.077 0.69 0.66 - 0.478
zero-padding 0.82±0.069 0.73 0.72 0.478 -

temporal positions are used. Here, we compare these different padding methods to

understand their impact on the model performance and provide insights that could

be helpful to future studies on related movement behaviors detection and PBD.

For the LOSO Macro F1 scores, a Friedman test is carried out to understand

if the difference in performance among the three padding methods are statistically

significant. Results are summarized in Table 4.3. The results show an effect of

padding method on PBD performance (X 2(2) = 8.853, p = 0.012).

Further post-hoc Wilcoxon Signed Rank test with Bonferroni corrections show

that last-padding leads to significantly worse performance than zero-padding (p =

0.028). This could be because by padding with the last sample, it seems that the

subject is maintaining the last position and ‘unable’ or ‘unwilling’ to move further,

and so appearing as being protective. As zero could be interpreted as a special null

value by the model, the zero-padding method may not suffer from this problem.

A competitive performance is achieved with next-padding, with no statistically

significant difference to zero-padding. Beyond the tuning of the network hyper-

parameters with zero-padding, the slightly lower performance with next-padding

could be due to the fact that many CP participants put clear pauses between each

activity. The significance of the breaks in padding is that they may seem like freezing

behavior. In the context of daily functional activities, we expect that people would

be more fluid in their transitions from one activity to another, leading to improved

performance with next-padding. However, as such breaks may actually occur in

everyday functioning for people with CP as they tend to prepare themselves before

starting another activity due to the fear of movement, the last-padding in this context

may correctly bias the model toward protective behavior, for the activity prior to
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a given break, suggesting that it possibly could also become an adequate method

for this case. Nevertheless, when the modeling is conducted on the continuous data

stream of varying activity types and transitions, the impact of these padding methods

is no longer considered.

4.3.3 Analysis on Sliding-Window Length

For the continuous PBD that we conduct either per activity instance (Chapter 4,

Chapter 5) or on the long data sequence of various activity types (Chapter 6), another

parameter used in data preparation, i.e., segmentation length, can impact the model

performance.

Andreas et al. [18] suggested that the window length needs to be adjusted to

different types of activity, while the overlapping ratio should be a trade-off between

the computation load and the segmentation accuracy. For the task of behavior

detection across different activity types, we ask what is the interplay between the

segmentation length and the model performance for each activity type, as well as for

data comprising all activity types. By looking into this question, we aim to provide

insights about how such parameter may be selected for future datasets on similar

scenarios. Still, further evaluations would be needed to confirm such understanding

as a priori when new PBD related datasets become available.

The boxplots in Figure 4.5 (left) show the distribution of the duration of each

activity instance in the EmoPain dataset across different trials, as well as participants.

The figure suggests that there are notable differences in duration between activities

and even between instances within the same activity, possibly caused by different

physical and psychological capabilities of participants. The large variation observed

in reach-forward is partially due to differences in capabilities of people to return to

the standing position.

We examine the PBD performance with different activity types based on differ-

ent window lengths in an independent analysis on window length. In addition, we

conduct another experiment with all activity types pulled together to better under-

stand the general effect of window lengths on activity-independent PBD performance.

The stacked-LSTM (3 LSTM layers each with 32 hidden units) is used together with



4.3. Evaluation of Data Preprocessing Methods 91

Bend

-down

One-leg

-stand

Sit-to

-stand

Stand-to

-sit

Reach

-forward

1600

1400

1200

1000

800

600

400

200

0

Samples

Window Length (60 samples=1 Second)

Sit-to-stand Stand-to-sit

Bend-down Reach-forward Average

Mean

F1-Score
Impact of Sliding-window Length on PBD 

Performance per Activity Type

60        90        120      150      180       240      300      360      420

0.85

0.8

   

0.75 

  

0.7 

 

0.65 

 

0.6 

  

0.55 

0.5 

 

0.45  

0.4

0.35

One-leg-stand

Duration Distribution per Activity Type

Figure 4.5: (Left): the duration distribution of activity instances in the EmoPain dataset,
where 60 samples=1 second. (Right): the impact of sliding-window length on
PBD performance per activity type.

our default segmentation (75% overlapping and zero-padding) and augmentation

(jittering and cropping) methods.

Impact of Sliding-Window Length on PBD Performance per Activity. For the

first set of experiments with a separate model for each activity type, we explore the

segmentation with window lengths ranging from 1 to 7s. Considering the size of the

dataset and the frame rate of 60Hz, we do not explore larger window lengths.

It should be noted that even though the durations of sit-to-stand and stand-to-sit

are similar, we treat them as different activity types. This is because, in real life, they

are not generally performed consecutively but interleaved with other activities. In

addition, their execution is not the reverse of each other, especially in people with

CP as discussed earlier.

The Macro F1 score for each window length are plotted in Figure 4.5 (right) for

each activity type, with a red line showing the average performance computed over

the five activity types per window length.

A repeated-measure ANOVA is run to understand the effect of the nine window

lengths (independent variables) and five activity types (independent variables) on

PBD performance (Macro F1 scores, the dependent variable) based on the folds

of LSSO cross-validation. The results show an effect of window length (F =



4.3. Evaluation of Data Preprocessing Methods 92

5.212, p = 0.001,µ2 = 0.173) and of window length and activity type interaction

(F = 3.188, p = 0.01,µ2 = 0.338) on PBD performance.

Post-hoc t-test shows that the window lengths in the range from 2.5s to 4s

show significantly better F1 scores (p < 0.05) than other lengths outside this range,

except for 5s. However, the detection at 5s only shows significant difference with 7s

(p = 0.01), and is approaching significantly lower performance than 4s (p = 0.056).

The post-hoc t-test for the interaction between window length and activity type is

not statistically significant, possibly due to the limited points for each activity (in

each of the 6 validation folds); still, a few observations should be made from these

results on the basis of Figure 4.5.

• Although both stand-to-sit and sit-to-stand have a short duration, their detection

performances differ when given window lengths more than 2.5s, with sit-to-stand

reaching the best performance at 2.5s and stand-to-sit reaching the highest perfor-

mance at 4s. Such differences could be due to the zero-padding used in this study:

padding with zeros given larger window lengths may improve or at least maintain

the detection of non-protective behavior for stand-to-sit, as a person generally feels

safe after reaching the chair and then relaxes; however, when a person stands up

from a chair, the protective behavior (e.g., guarding) often persists at the standing

posture due to the absence of support (muscle tension remains despite no need and

trunk remains slightly flex [19]), therefore zero-padding at the activity completion

could conflict with the interpretation of such behavior.

• Despite the fact that the best performance for one-leg-stand is at window length

of 4s, this activity is less affected by different window lengths. This could be ex-

plained by the fact that while this activity is transient (consisting of simply raising

and lowering the leg), it is also sustained because the participant tends to hold

the position (possibly oscillating the leg up and down); as a result, performance

remains high across short and long windows. In a real situation, leg raises (or

balancing on one leg) happens during walking or climbing stairs, thus such short

events could be more of interest.
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• Detection on bend-down and reach-forward instead benefits from longer window

lengths, possibly because the bending movement that characterizes them is com-

mon to many other activities (e.g., CP participants tend to bend the trunk first in

sitting down to search for support and normal standing up involves a bend as well

to facilitate) and so the system needs more information to know how to interpret

bending movement correctly.

Given the analysis above, we shortlist window lengths of 2.5s, 3s and 4s for the

activity-independent PBD exploration reported in the next.

Impact of Sliding-Window Length on PBD Performance across Activities. With

all the activity instances pulled together for training and testing, we conduct LOSO

experiments with the three window lengths (2.5s, 3s and 4s) summarized from the

previous experiment.

The results are reported in Table 4.4. A high performance is achieved for all

three window lengths (independent variables), but a Friedman test shows statistically

significant difference in performance (LOSO Macro F1 scores) between the three

window lengths: X 2(2) = 8.914, p = 0.012. Post-hoc Wilcoxon Signed Rank test

with Bonferroni corrections on the Macro F1 scores show that the 3s window leads

to significantly better performances than the window of 4 seconds (p = 0.017)

but its performance shows only marginal significance in comparison with the 2.5s

window (p= 0.093). No statistical differences were found between the performances

achieved with the 4s and 2.5s windows.

Looking further at the results (Macro F1 scores) across the 30 subjects, presented

in Figure 4.6 (number 1 to 12 represent healthy participants, 13 to 30 represent CP

Table 4.4: PBD performances (Mac.F1) under three sliding-window lengths across all activ-
ities. 95% confidence intervals are added to the LOSO results.

Validation Method Activity Type 2.5s 3s 4s
Bend-down 0.64 0.75 0.75

One-leg-stand 0.77 0.8 0.81
LSSO Sit-to-stand 0.72 0.69 0.66

Stand-to-sit 0.71 0.76 0.83
Reach-forward 0.66 0.67 0.67

LOSO All activities 0.78±0.084 0.82±0.069 0.73±0.077
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participants), we can notice some effects of window length.

• The detection performances on most control subjects are 100% accurate across

all three window lengths; this could be due to an imbalanced distribution in the

training set in which non-protective data take a larger proportion; and the protective

movements exhibited by participants with CP suffer more from the padding effect

introduced by changing window lengths.

• The model results for people with CP vary with window lengths without a clear

pattern, particularly for subjects 13, 16, 17, 22, 26, 28, 29, and 30; this emphasizes

the impacts of individual variations on the temporal properties of the data, as

shown by the boxplots in Figure 4.5 (left); this may be related to the wide range of

protective movement strategies and length of each activity among patients with

CP. This may suggest that personalized training may reach better results when

sufficient data per person are available.

Overall, the statistical analyses we conduct in the two sets of experiment re-

ported above suggest the following.

• Longer window lengths (>2s) are desirable for activity-independent PBD (at a

frame rate of 60Hz), suggesting that the window shall contain sufficient information

to differentiate between movements required to conduct an activity and movements

associated with protective behavior.
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• Window lengths longer than the duration of most types of activities suffer from the

padding effect and reduction in number of frames, resulting in worse performance.

Given the representativeness of the EmoPain dataset in terms of movements

that it contains and the variability of participants with CP it covers, we expect that

principles learned from our study would also apply to other datasets that involve

data building on the five basic activities in this study. Naturally, further studies may

repeat our experiments to confirm this, when new datasets become available.

4.4 Summary
This chapter investigated the possibility of using deep learning to improve PBD

across activity types and continuously within each activity instance by using IMUs

and sEMG data. In our approach to addressing this problem, we explored both

convolutional and recurrent neural networks, and a traditional approach with RF. In

summary, the best detection result was obtained with a stacked-LSTM network, with

accuracy and Macro F1 score of 0.87 and 0.82 respectively in LOSO cross-validation.

Analyses on the parameters relevant to our approach were conducted to under-

stand how they affect PBD and could inform PBD in future datasets.

First, we evaluated different approaches to padding in the segmentation of data

streams. The results suggest that it is valuable to use a method that does not introduce

confounding behavior (i.e., data that could be interpreted as protective behavior) in

creating the data frames. In our case, the best method was the zero-padding (the

other two we explored were the Last-padding and the Next-padding), and the second

best was the Next-padding, suggesting that PBD could also work in full continuous

detection without pre-segmentation of activity. However, the zero padding may have

its own limitations when protective behavior occurs at the beginning or at the end of

an activity. Hence, in the case of activity-dependent modeling, one should consider

if the activity type is likely to generate protective behavior in preparation for the

exercise or at completion of the movement.

Second, we also compared different data augmentation methods. Our findings

suggest that it is important to avoid the use of augmentation methods that noticeably
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affect the temporal order of data in a frame. In our experiments, the reversing

augmentation method (which we compared with jittering and cropping methods as

well as no augmentation at all) may alter the temporal dynamics that characterize

how protective behavior is presented during an activity, leading to worse performance

than when no augmentation was done.

Third, we explored the effect of the window length used for data segmentation,

and we found that the PBD performance generally increased with growth of the

window length until a certain peak, beyond which performance appeared to drop.

This could be due to the fact that shorter lengths provide insufficient information to

understand the movement dynamics and hence distinguish protective behavior from

normal expected movements. Meanwhile, larger window lengths may suffer because

there is more padding, relative to data present in the windows. Although we found

the optimal window length to vary with activity type, our findings suggest that good

performances across activity types can be achieved using any window length within

a small range of values of 2.5s to 4s, based on our setting. Our statistical analysis

results and observations on PBD suggest that the specific range will depend on both

the amount of diversity of targeted activities (rather than the specific dataset used)

and the duration of each of these activities.

These three sets of insights that emerged from our work in this chapter, based on

the EmoPain dataset (and so representative in terms of everyday activities, protective

behavior, and the CP population), contribute a set of criteria to select possible optimal

parameter settings for future PBD datasets. Naturally, we acknowledge that further

testing on other datasets would be necessary to fully verify these findings.

The work presented in this chapter was carried out in 2018-19 and published

first in the conference of Ubicomp/ISWC’19 [9] with its extended version published

in ACM HEALTH [8]. At the point of completing this thesis, the work presented

in this chapter has received 19 citations (excluding the self-reference by my own

works). Five of them are review papers taking our work as example to show advances

in pain-related technology [107, 108], behavior sensing from body movement [109],

wearable research [110], and healthcare management [111]. Li et al. [112] built
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on our work by proposing a network comprising LSTM layers as the encoder and

dense layers as decoder for pain intensity estimation as well as PBD. With a hold-out

validation setting, they achieved improved activity-independent PBD performance

than the method of using stacked-LSTM alone (mac.F1 of 0.93 vs. 0,92). Yuan et al.

[113] proposed to use LSTM layers to build an autoencoder structure and connect

it with an attention learning module for PBD, achieving improved performances

(mac.F1 of 0.59 vs. 0.48) as well. To alleviate the manual efforts made in data

partitioning, e.g., pre-segmentation of activity instances in our case, [114] proposed

an unsupervised method to incorporate maximum mean discrepancy for the learning

of sample (dis)similarities for automatic time-series partitioning.



Chapter 5

Capturing Variety with Attention to

Improve Performance

The study presented in the previous chapter provides us with a set of criteria on how

sequential data could be better augmented and segmented to enable the training of

deep learning models for activity-independent protective behavior detection (PBD).

In this chapter, under a similar experimental setting, we investigate how to further

improve activity-independent PBD in pre-segmented activity instances. To do so, we

look into the definition of pain behaviors [21, 23, 30, 31] and descriptions provided

by physiotherapists in [19] that we discussed in the background chapter.

The pain literature [21, 23, 30, 31] provide evidence that fears of injury, pain,

and anxiety in chronic pain (CP) cause the individual to engage bodily parts in ways

that are not biomechanically necessary or efficient, but may create a sensation of

control and assist to alleviate fear. People with CP break their movement in parts,

shifting their attention to one part of the body at the time to increase the sense of

control. They also recruit specific body parts to help avoid or minimize the use of

the ones perceived at risk. From [19] we learned that, in designing interventions to

improve movement-related self-efficacy of people with CP, expert observers point out

how specific body parts are particularly important to detect the presence or absence

of protective behavior.

So far, such attention information was not leveraged in PBD. By applying

vanilla neural networks globally on the concatenated multidimensional data, the
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ability of a model to learn local movement dynamics at different body parts is limited.

This may hinder the model performance, given that the informative local movement

cues are not well learned and redundant information of the idiosyncratic variability

in the movement of less relevant body parts may introduce noise. Furthermore,

studies in HAR have seen the success of using attention mechanism for achieving

better performances and providing insights about the input data, i.e., suggesting the

data collected from the specific part of the body provide more informative clues for

model’s decision-making. As a result, for PBD, this chapter explores how to use

attention mechanism to guide the network design to improve the performance as

well as to provide data-driven evidences about the movement pattern of people with

CP that were only seen in previous qualitative pain literature. Additionally, it leads

to develop a new intervention as the body-part attention-driven sonification to help

people increase awareness of their use of protective behavior [115].

We propose that for activity-independent PBD, both temporal and bodily at-

tention mechanisms could be useful to capture the attention shifting observed by

physiotherapists when describing protective behavior in people with CP. The contri-

bution made in this chapter is as follows.

• We propose an end-to-end neural network architecture called Body Attention

Network (BANet). BANet is able to self-learn when (temporal attention) and what

(bodily attention) subsets of the anatomical joints contribute most to the detection

of protective behavior. Here, we focus only on MoCap data comprising streams of

joint angle, but the network can be easily adapted to data of joint positions or even

data collected from multiple sensor types (e.g., MoCap plus EMG data).

• Through a range of experiments on the EmoPain dataset, we demonstrate that

our method can achieve state-of-the-art results, if not slightly higher, with fewer

trainable parameters for the detection of protective behavior.

• With visualization and statistical analysis of both temporal and bodily attention

weights (learned model weights), we discuss how such mechanisms could capture

the dynamic piecemeal breaking of movement expected in people with CP.
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Figure 5.1: (a) Overview of the BANet, where each body part is described by the joint angle
plus energy features. (b) The 13 joint angles that used as the input for BANet,
where data collected from the participants’ feet are noisy and hence not used in
this work.

5.1 The Body Attention Network

In this section, we first present the BANet architecture. Then we describe the

attention mechanisms designed considering the characteristic of protective behavior

and targeting the issues we found in the previous HAR literature.

An overview of BANet and 13 joint angles are shown in Figure 5.1. The input

to the BANet is a 2×13 low-level movement matrix (comprising angles and energies

from 13 body parts), for each sample/timestep in a movement frame. A shared

vanilla LSTM subnetwork is used to extract the temporal information separately

from each of the 13 body parts, i.e., given a data frame, the output of such temporal
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decoder is a matrix of hidden states HT = [hc,k
1 , ...,hc,k

t ] with hc,k
t = [h1,k

t , ...,hC,k
t ],

where c ∈ {1,2, ...,13} for the 13 body parts, t = 1,2, ...T for the data frame with

temporal length of T , and k = 1,2, ...,K for the number of hidden units used in the

temporal encoder.

5.1.1 Temporal and Bodily Attention Learning

The attention mechanism of BANet is implemented with two stages: a temporal

attention module is placed first, separately for each body part, followed at a higher

level of the model by a global bodily attention module.

Unlike the attention-based architecture seen above for wearable HAR, we

propose to put the processing backbone, the LSTM subnetwork, at the beginning of

the model to provide the two attention mechanisms a higher-level knowledge about

the temporal dynamics of the movement of each body part given a certain duration.

We also propose to learn the temporal saliency of the movement of each body before

we go to understanding the importance of different body parts. In this subsection,

we describe in detail the two attention modules below.

Temporal Attention Module. To learn the temporal attention weight aC
t for HC,K

t

across all the timesteps t of the current input frame, we use a 1×1 convolutional

layer and a softmax layer as

aC
t = softmax(Wa ∗HC,K

t ), (5.1)

with

softmax(xi) =
exp(xi)

∑
N
i=1 exp(xi)

, (5.2)

where Wa is a learnable weight matrix, and ∗ is the convolution operation. The

computation for temporal attention is illustrated in Figure 5.2 (above).

Unlike the fully-connected layer, the 1× 1 convolution layer acts as a linear

embedding which limits irrelevant connections among the input matrix (in our case

is the dense connection of samples within a frame). Thus, the 1×1 convolution layer

can help minimize the number of trainable parameters. We would further experiment
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Figure 5.2: The temporal attention block (above) and the bodily attention block (below) that
we used in the proposed BANet.

with a variant using fully connected layer for temporal attention computation to

justify this.

The temporal attention module further includes a merge of the attention weights

with the original output of the temporal decoder at each body part through a multipli-

cation followed by a sum-up over samples as

HK
C =

T

∑
t=1

aC
t HC,K

t . (5.3)

The output of the temporal attention module is a matrix of the weighted-sum of

the temporal information from each of the 13 body parts, which can be written as

Hk
c = {[h1

1, ...,h
K
1 ], ..., [h

1
13, ...,h

K
13]}.

Bodily Attention Module. So far, the network has processed the data frame sepa-

rately per body part, where the informative temporal subset of the movement of each

body part is learned.

To learn the subset of the body parts that play a key role in the detection of

protective behavior during a given movement segment, here we describe the bodily

attention module. In this module, the attention to the body parts is computed upon

the knowledge across the whole body, in which way each body part is considered

in the context with the other body parts to learn what is important at that segment

of time. We use two fully-connected layers with tanh and softmax activations to

compute the bodily attention weight bc as
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bc = softmax(tanh(Wβ HK
c )), (5.4)

where Wβ is a learnable weight matrix. The bodily attention module is completed by

merging the bodily attention weight with the original output of the temporal attention

module as.

attenHK
C = bc ⊙HK

C . (5.5)

Such attention-over-attention structure of BANet finally produces a K ×13 matrix

attenHK
C which encodes the importance of each body parts at important moments

(samples) for the input segment. With such output, the detection is finally completed

with a fully-connected layer using softmax activation.

5.2 Experiment Setup
In this section, we briefly present the data preparations and experimental settings.

5.2.1 Data Preparation

Unlike the study we present in the last chapter, here we only use the movement data

(and not the sEMG data) of the EmoPain dataset. That is, we want to understand

how the model learns the movement cues that are relevant and compare it with how

physiotherapists had described the protective movement behaviors.

In total, there are 46 activity instances, where each instance is around 10 minutes

long and contains sequences of sit-to-stand, stand-to-sit, bending, reaching forward

and one-leg-stand activities. Following the low-level features described in Chapter 3,

each sample is characterized by 13 joint angles, as well as the energies of these. The

energy is the square of the respective angular velocities.

To create the training and test data for the experiments, we adopt the segmenta-

tion with a sliding window length of 3 seconds and overlapping ratio of 75% within

each activity type in the movement data. 0-padding is used when the window slides

beyond the end of a given activity type. This amounts to a total of 2,569 frames. The

groundtruth for each frame is set based on majority-voting, where a frame is labelled

as protective if at least 50% of the samples within it had been rated as protective by
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each of at least 2 out of the 4 raters, and non-protective otherwise.

For the training of BANet and of other architectures adopted for comparison,

we apply two augmentation approaches, namely jittering and cropping, as also

mentioned in Chapter 3. The use of the two approaches leads to 18,653 segments,

where 11,373 segments are labelled as non-protective (from both healthy participants

and participants with CP) and 7,280 segments are labelled as protective (only from

participants with CP).

5.2.2 Implementation Details

The BANet is implemented with TensorFlow deep learning library. For the LSTM

subnetwork acting as the temporal encoder, we use a 3-layer LSTM network with

8 hidden units in each layer. Dropout with probability of 0.5 is used after each

LSTM layer. For the full architecture, weights are updated with Adam optimizer,

with a learning rate of 0.003 and batch size of 40. The validation method used in

this study is the standard leave-one-subject-out (LOSO) cross-validation across the

30 subjects. We report the Macro F1 score with 95% confidence interval as the

metric. Statistical tests, particularly Friedman test and post-hoc Wilcoxon Signed

Rank tests with Bonferroni corrections, are used to compare the performances of

different architectures.

We compare BANet with vanilla neural networks described in the earlier chap-

ters: i) Convolutional LSTM (Conv-LSTM), with convolution kernel size of 1×10,

max pooling size of 1×2, 10 filters, 28 LSTM hidden units and batch size of 50;

ii) Bi-directional LSTM (bi-LSTM), with 14 LSTM hidden units followed by a

Dropout with probability of 0.5, and batch size of 40; iii) stacked-LSTM, a vanilla

3-layer LSTM network with each layer of 28 hidden units followed by Dropout with

probability of 0.5, and the batch size is set to 20. For all the neural networks, the

Adam optimizer is used with a learning rate of 0.003.

We also compare it with several variants of the current BANet architecture to

better understand how the two attention mechanisms, in terms of their order and

mode of use, affect PBD performance.

First, we create a variant of the BANet with a fully-connected layer used in the
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temporal attention computation (referred to as BANet-dense) replacing the default

1×1 convolution layer.

In addition, we compare with the variant (referred to as BANet-compat, for

BANet compatibility version) where the computation of bodily attention is done at

an input level instead of at feature fusion level with the same attention algorithms

presented in the last section. Specifically, for BANet-compat, at each timestep, the

bodily attention weights were computed for the 13 body parts. After multiplication

with the original data per timestep, all the timesteps are concatenated for the temporal

information extraction and temporal attention computation as stated above. Thereon,

the output to be classified has the same size of k×13 as the BANet (k is the number

of hidden units of the LSTM encoder).

Finally, to show the impact of the two attention modules that we use together, we

provide the results of BANet-body where only the bodily attention is implemented

at the input level, and BANet-time where only the temporal attention is computed.

5.3 Result

Results for the comparison experiments are shown in Table 5.1. As we can see, the

proposed BANet achieves the best results (accuracy of 0.87, Macro F1-score of 0.84),

with a smaller parameter size of 8,131 in comparison to other tested LSTM-based

architectures (parameter size ranging from 14,000 to 40,000).

The parameter reduction is obtained in BANet through the use of: i) the temporal

information extraction strategy targeting each body part, which processes data of

a smaller dimension and allows the respective shared LSTM layer to have smaller

number of hidden units; ii) a 1×1 convolution layer instead of fully-connected layer

for computing the temporal attention, with the former being a critical advantage due

to the many timesteps (180 timesteps) of the input to this layer.

The second best is achieved with BANet-body which shows the importance of

focusing on a subset of joint angles (rather than all) for the detection of protective

behavior. Instead, the BANet-time that only learns the temporal attention separately

for each joint angle does not achieve high accuracy results. This is expected and is



5.3. Result 106

Table 5.1: Results (Mac.F1 with 95% confidence intervals) and p-values of the post-hoc
Wilcoxon Signed Rank test with Bonferroni corrections using LOSO results of
the comparison experiment. The method of the best macro f1 score is in bold.

Methods Accuracy Macro F1
p-value

against BANet
(< 0.05)

Parameter size

Conv-LSTM 0.81±0.087 0.74±0.105 0.027 40,940
bi-LSTM 0.85±0.058 0.80±0.074 0.175 14,282
stacked-LSTM 0.86±0.055 0.81±0.072 0.22 18,986
BANet-compat 0.66±0.125 0.57±0.137 <0.001 12,204
BANet-dense 0.82±0.065 0.79±0.074 0.058 71,430
BANet-time 0.81±0.069 0.76±0.085 <0.001 7,767
BANet-body 0.87±0.050 0.83±0.070 0.167 8,023
BANet 0.87±0.049 0.84±0.065 - 8,131

due to the lack, in this network, of global processing over all body parts.

The next best result is achieved by the stacked-LSTM (accuracy of 0.8534,

Macro F1-score of 0.812). Although the result is very similar to BANet’s (see also

their confusion matrices in Table 5.2), stacked-LSTM requires a larger number of

parameters (18,986).

On the other hand, except for that the BANet-compat is only a representative of

the architectures used in [15, 16, 17], the results imply that encoding the importance

of body joints at a single timestep is not valuable to the detection of protective

behavior, but should be delayed to a higher-level processing stage using data input

of a certain temporal length.

Comparison of BANet with vanilla LSTM-based variants. Here, we first verify

if our BANet performs statistically better than the other three vanilla LSTM-based

variants. The Friedman test shows statistically significant differences in the perfor-

Table 5.2: The confusion matrices for BANet and stacked-LSTM.

BANet Non-protective Protective

Groundtruth
Non-protective

1491
(92.84%)

115
(7.16%)

Protective
331

(31.83%)
709

(68.17%)
stacked-LSTM Non-protective Protective

Groundtruth
Non-protective

1451
(90.35%)

155
(9.65%)

Protective
322

(30.96%)
718

(69.04%)
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mances across LOSO folds (X 2(3) = 8.544, p = 0.036). Post-hoc Wilcoxon Signed

Rank tests with Bonferroni corrections show that BANet is only statistically signifi-

cantly better than Conv-LSTM, which yet has the largest parameter size of 40,940

than all other compared vanilla neural networks. Although the significance does not

hold in comparison with bi-LSTM and stacked-LSTM, our BANet has noticeably

smaller parameter size, more practical for real-life deployment.

Furthermore, the availability of temporal and body weights allow developing

new types of intervention. For example, the attention weights produced by BANet

were used to drive a new body-movement sonification approach to help people with

CP become aware of their protective behavior and capabilities [115].

Comparison of BANet variants. We then explore if our BANet performs statistically

better than its different variants. The Friedman test shows statistically significant

differences in the performances across LOSO folds (X 2(4) = 56.109, p < 0.001).

Post-hoc Wilcoxon Signed Rank tests with Bonferroni corrections show that signifi-

cance does not hold with respect to the BANet-body (p=0.167) and BANet-dense

(p=0.058). However, BANet-dense uses a pretty large parameter size of 71,430

than BANet. When the BANet-body itself is compared with the other architectures,

significant differences are found with BANet-time (p < 0.001) and BANet-compat

(p < 0.001). This suggests that the impact introduced by the bodily attention module

is more significant than temporal attention.

5.3.1 Analysis on Attention Weights

In this section, we analyze trends in attention weights of BANet to understand to

what extent the two attention mechanisms capture aspects of protective movement

strategies highlighted in the pain behavior literature [21, 23, 30, 31]. Besides im-

proving model performance, the weights computed by the attention modules toward

the input of 13 local joint angles may help verify if the BANet learns information

that reflect physiotherapists’ description of protective behavior.

Analysis of Bodily Attention Weights. Figure 5.3 shows boxplots of the distribu-

tions of bodily attention weights learned from test segments over all the 30 folds of
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Figure 5.3: Boxplots for the distribution of bodily attention weights computed by BANet
for each testing data of a joint angle, organized by activity type.

participants per joint angle, organized by activity type. It is interesting to see that the

boxplots for healthy participants (green) are quite narrow compared to those of par-

ticipants with CP (blue and orange). The boxplot ranges of the healthy participants

for most body parts is centered around a medium value. This suggests that data of the

healthy participants collected from most body parts tend to receive similar attention

within a certain type of activity. By contrast, such is not the case for the boxplots of

the patients, either for those showing protective or non-protective behaviors. This

reflects findings in previous pain literature, pointing to the larger variability between

people with CP in terms of movement strategies (beyond idiosyncrasy) adopted to

perform a particular activity.

We then combine the weights of CP participants showing protective and non-

protective behaviors, and conduct an independent t-test (two-sample t-test) analysis

to compare the size of the boxplots (i.e., using the difference between the 0.75

and 0.25 quantiles of each box as dependent variable) between the healthy and CP
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Table 5.3: Results of the independent t-test for comparing the size of boxplots between the
healthy and CP participants (showing protective or non-protective behaviors). DF
denotes the degree of freedom.

Activity Type
Healthy vs. CP

Healthy Mean CP Mean t-value DF p-value< 0.01
Bend 0.0237 0.0456 -6.0356 24 3.1216e-6
One Leg Stand 0.0214 0.0469 -7.1571 24 2.1353e-7
Reach Forward 0.027 0.0485 -5.1580 24 2.7867e-5
Sit to Stand 0.0206 0.0415 -5.4574 24 1.3115e-5
Stand to Sit 0.019 0.0447 -7.2632 24 1.6702e-7

participants (with participant type as independent variable) across all body parts

(represented by the respective joint angle). Such analysis is repeated for each activity

type. The results show that the box sizes of the participants with CP (showing normal

or protective behavior) are significantly larger than that of the healthy participants

(see Table 5.3 for p-values per activity type). One should consider that, given the

number of comparison (5 activities) performed, a Bonferroni correction should be

considered (p < α/5 for significance).

Analysis of Temporal Attention Weights. Figure 5.4 shows heatmaps of the tempo-

ral attention weights per joint angle for one healthy participant and one participant

with CP for the activity of stand-to-sit. As shown, the temporal attention paid to

different body parts (represented by respective joint angles) of the healthy participant

look more homogeneous than that for the participant with CP. We further create

the heatmaps of each participant per each activity type, as shown in Figure 5.5. In

general, a higher homogeneity of temporal attention weight assigned to each body

part across time is seen in healthy participants for all the five activity types but not in

participants with CP.

To enable a statistical analysis of the maps and a comparison between healthy

and CP participants’ temporal attention variations, we first apply min-max nor-

malization to the temporal attention weights computed for each body part of each

participant. Then, we compute the entropy for temporal attention weights at each

body part over time for each participant to represent the level of variation. The

independent t-test shows that the temporal attention paid to each body part of partici-

pants with CP is significantly less homogenous (with higher entropy) than that of
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Figure 5.4: Heatmaps of the temporal attention weights computed in BANet for testing in-
stances of healthy subject number 16 and patient number 14 with their respective
movement data (stick figures).

the healthy participants (see Table 5.4 for p-values for each activity). It should be

noted that, given the number of comparison (5 activities) performed, a Bonferroni

correction should be considered (p < α/5 for significance).

The above observations and statistical analyses on bodily and temporal attention

weights can be related back to the pain literature in two ways.

First, even when people were not asked to perform a movement according to

ideal trajectories, healthy subjects tend to perform simple everyday movements in

a quite similar way [116] as suggested by the size of the boxplots of the bodily

attention weights. Only a few healthy participants’ boxplots are slightly wider,

especially in bend and reach-forward. This could be because these two activities are

biomechanically demanding, and (as revealed in the previous chapter) some healthy

Table 5.4: Results of the independent t-test for comparing the entropy of temporal attention
weights between the healthy and CP participants (showing protective or non-
protective behaviors). DF denotes the degree of freedom.

Activity Type
Healthy vs. CP

Healthy Mean CP Mean t-value DF p-value< 0.01
Bend 179.3564 230.7798 -7.9902 24 3.2248e-8
One Leg Stand 700.0913 906.2388 -3.6921 24 0.0011
Reach Forward 373.0753 411.4715 -3.0893 24 0.0050
Sit to Stand 192.0729 229.1187 -3.3378 24 0.0027
Stand to Sit 130.0677 290.2926 -38.2443 24 5.0895e-23
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Figure 5.5: Heatmaps of the temporal attention weights computed in BANet for each partic-
ipant, organized by activity type (zoom in for better reading).

people hesitated in performing these as they were not sure of the instructions (upon

an analysis of the original on-site videos).

The wider boxplots of the people with CP instead reflect the literature on CP

[21, 23, 30, 31, 19], suggesting larger variety in movement strategies according to

how their physical and psychological capabilities affect what the person perceives

as safe or dangerous or what part of the body is perceived as more vulnerable. For

instance, in stand-to-sit, a person may reduce weight on the legs by twisting the trunk
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and use the chair as a support, such as in Figure 5.4-P14.

Second, the limited width of the healthy participants’ boxplots together with

their more homogeneous temporal weights across body parts and time suggest that

the BANet considers the different body parts of more-or-less similarly important

in the detection process. This is in line with the pain literature suggesting that

healthy people have a synergetic way of using different body parts when performing

the movement [12]. For example, see the temporal attention weights of healthy

participant number 16 in the stand-to-sit (Figure 5.4).

However, this homogeneity in body and time is not seen for CP participants. As

discussed in [38, 19], people suffering from CP tend to engage different body parts

at different stages of the movement rather than in a synergetic way, despite making

the movement more difficult to execute. This self-induced difficulty is also often the

cause for perceived poor self-efficacy and for increase of pain.

For example, let us analyze in more detail P14’s darker (and so higher) temporal

attention weights during stand-to-sit (Figure 5.4 (b)). P14’s engagement of the leg

and shoulder at the initiation of the sit-down suggests hesitation (as indicated by

physiotherapists in [12, 19]). We know from video analysis that this initial hesitation

is followed by a horizontal twist of the shoulder (which is captured by the right

shoulder’s score) followed by the bending of the neck to check for the chair position,

then still the twisting of the shoulder (captured by the left shoulder score) to use the

arm (left elbow bent beside the trunk) for support on the chair to minimize the load

on trunk and on legs. The healthy participant C16 also uses the arms, but behind the

body (rather than on the side) to reach for the chair together with the trunk, which

are not used as support for legs or back.

5.3.2 Extra Evaluation of BANet on HAR Datasets

Given the interesting results obtained with BANet for PBD, another work [20] has

shown the generalizability of BANet in the context of wearable HAR. They tested

our proposed BANet against previous state-of-the-art methods, including attenLSTM

[15], DeepSense [73], SADeepSense [117], and their proposed GlobalFusion method,

on several wearable HAR benchmark datasets. Unlike BANet that only considers the
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Table 5.5: The performances (macro F1 scores with 95% confidence intervals) of BANet
and previous state-of-the-art methods reported in [20], using several wearable
HAR and abnormal behavior detection datasets.

Method
Dataset

RealWorld-HAR DSADS DG
DeepSense 0.73±0.081 0.86±0.047 0.64±0.106
SADeepSense 0.73±0.061 0.86±0.035 0.60±0.051
attnLSTM 0.69±0.106 0.87±0.064 0.58±0.046
GlobalFusion 0.84±0.055 0.94±0.035 0.69±0.094
BANet (ours) 0.75±0.066 0.87±0.049 0.62±0.106

attention learned at different body parts and temporal segments, GlobalFusion looks

into the sensing quality of different modalities, e.g., accelerometer vs. gyroscope.

On the three wearable HAR and abnormal behavior detection datasets used in

their study, namely RealWorld-HAR [118], DSADS [119], and DG [71], according

to their reported performances, our BANet achieved the second-best (2 times) and

third-best (1 time) performances of macro F1 scores (see Table 5.5). While the

design of our BANet is generalizable for processing movement data collected from

multiple body parts, such competitive performances are very encouraging as they

demonstrate that our method could be useful to the broader community working on

body movements.

In this subsection, we further test on another typical benchmark wearable HAR

dataset, namely Skoda [67], to evaluate the performance of our BANet beyond PBD.

We also compare with other methods that have been tested on this dataset, including

ConvLSTM [65], LSTM-S [13], Ensemble of LSTM [60], Att.Model [16], and

attenLSTM [15].

For BANet, the input is directly data collected from the 10 accelerometers

attached to the right arm of the participant without using low-level features, with one

LSTM layer comprising 64 hidden units used as the temporal encoder. The data is

down-sampled to 33Hz, with 80% of data per class used for training and the rest

used for validation (10%) and testing (10%). The results are reported in Table 5.6.

As shown, our proposed BANet achieves the highest performance on this

wearable HAR dataset in comparison with other methods with or without using

attention mechanisms. The competitive performances achieved so far by BANet on
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Table 5.6: The results of our BANet and other compared methods on Skoda dataset for
human activity recognition.

Method Macro F1 score
LSTM-S [13] 0.92
ConvLSTM [65] 0.91
Ensemble of LSTM (M=20-CE(20)) [60] 0.93
Att.Model [16] 0.91
AttenLSTM [15] 0.94
BANet (ours) 0.96

a series of HAR datasets suggest that the model we develop for PBD could be also

useful for other movement-based tasks.

5.4 Summary

This chapter investigated the use of both temporal and bodily attention mechanisms

combining LSTM layers to improve the detection of activity-independent protective

behavior within pre-segmented activity instances. In comparison to the state-of-

the-art [15, 16, 17], our architecture delayed the attention processes to the second

and third levels of the architecture to enable primary learning of low-level features

as the movement was processed. In doing so, both attention mechanisms worked

on a higher-level representation of the movement. The results showed that such

an approach led to a substantial improvement (Macro F1 score increases from

0.572 to 0.844). Further, it showed results slightly higher than other LSTM-based

architectures (without significance against two of them), with a critical decrease in

number of trainable parameters (from 40,940 to 8,131).

The results also suggested that bodily attention mechanism played a more

important role than the temporal attention mechanism (Macro F1 score of 0.831

vs. 0.758 respectively). Still, the combination of the two mechanisms led to a

better performance (Macro F1 score of 0.844). This suggested that the temporal

attention mechanism may capture more detailed local temporal dynamics missed by

the bodily attention one. In addition, such temporal dynamics may also be critical in

discriminating between strategies.

We also discussed some examples of how the two types of attention mechanism
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weights captured aspects of movements by people with CP discussed in the pain

literature. In addition, these results also suggest that such systems, deployed in

everyday rehabilitation activity, could be used to provide more personalized feedback

to patients by building functions based on attention weights.

In fact, BANet has recently been used to develop a sonification software driven

by the attentional weights to let patients explore how they move [115]. Studies with

patients have not been yet run. As the behavioral study on CP is still developing and

mainly based on lab studies [44, 45], BANet could also contribute to the qualitative

pain literature by enabling a data-driven understanding of protective behavior in

everyday life.

We concluded by demonstrating the competitive if not better performances of

the proposed BANet on a series of HAR datasets (as seen in the HAR study [20] that

compared with our method, and the experiment reported in our thesis), in comparison

with other methods that had been specifically developed in the context of HAR. This

suggests that the method we developed for PBD has a certain level of generalizability

to carry out movement-based tasks from behavior detection to activity recognition.

This work was done during 2019, and is published in a workshop of conference

ACII’19 [10]. By the point of completing this thesis, the work presented in this

chapter has received 23 citations (excluding the self-reference by my own works).

Aside from the study [20] that compared with our work for activity recognition, our

attention-based method has inspired the study [120] on the design of their spatial

attention mechanism in the development of an attention-based graph convolutional

network for bodily emotion recognition. Aside from the bodily attention mechanism

proposed in our work, the use of a 1×1 convolutional layer for temporal attention

computation is also used by [121] in designing their attention-based LSTM network

for group behavior detection in human-robot interaction.



Chapter 6

Improving Protective Behavior

Detection in Continuous Data

The studies presented above demonstrate how to leverage deep learning for better

protective behavior detection (PBD) on instances of various activity types with

suitable data preprocessing methods (i.e., segmentation and augmentation) and an

attention-based deep learning model. However, interesting PBD results are only

achieved within pre-segmented activity instances.

Pre-segmentation was used in our initial studies (Chapter 4 and Chapter 5)

to help focus on understanding the feasibility of using deep learning for activity-

independent PBD. In order to move one step closer to real-life PBD systems, pre-

segmentation cannot be used anymore. This is because: i) a real-time system needs

to function without knowing in advance what type of activity is about to occur;

ii) in real life, activities are not well separated from each other, but they generally

merge into one another. In short, rather than waiting for a full activity instance to

be recognized, it would be useful to provide feedback when the activity is being

performed as soon as protective behavior is being detected. As a result, in this

chapter, we study continuous PBD without pre-segmentation that should be fully

agnostic to the type of activity being performed.

In this chapter, we aim to address such a limitation by leveraging recognition

of the context, namely the continuous recognition of the activity (HAR). In the

literature review of Chapter 2, we showed how context recognition has proved to
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support the targeted task [85, 88, 90]. However, the same question has never been

explored in the context of bodily expressions and surely not for the challenge of

continuous PBD. Hence, the research question we investigate in this chapter is:

how can contextual information be leverage to enable fully continuous PBD across

sequences of activities with their transitions?

Here we consider two levels of contextual information in this study. The

first type is the inherent configuration of the body, represented by data collected

from sensors attached to different bodily positions. In Chapter 5, we showed the

importance that local bodily movement dynamics have in PBD, leading to the use

of a network with bodily attention mechanism only that performs similarly to the

integrated BANet.

The second is the type of activity being performed, which also strongly builds

on the first level of body configuration. In Chapter 4, our analysis suggested that the

network needs to have sufficiently long windows to gather information about the

activity that is performed in order to further understand if the movements executed

are abnormal or not. However, all the networks and learning model explored in

previous chapters were not specifically enabled to leverage such a context. Therefore,

we explore approaches to more directly leverage the contextual information in this

chapter. The contribution made in this chapter is five-fold.

• For the first time, continuous detection of protective behavior is studied across full

data sequences of CP patients. Previously, continuous PBD was only established

on pre-segmented activity instances.

• A novel hierarchical HAR-PBD architecture is designed to leverage activity recog-

nition to enable detection of protective behavior (i.e., movement behavior driven

by emotional variables) in continuous data sequences. Protective behavior was

investigated in the past without leveraging its activity background.

• Graph convolution (GC) [122] and long short-term memory (LSTM) [97] layers

are combined to model the configuration of body-worn inertial measurement units

(IMUs) for PBD, while in the past only convolutional neural networks (CNNs)
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[123] and LSTMs were applied. Although the concept of combining GC and

LSTM exists in computer vision, it is used for the first time to show the advantage

of graph representation in the context of emotional behavior across activities.

• A loss function referred to as CFCC loss is used to alleviate class imbalances of

continuous data. Investigations of its effect on HAR and on PBD are reported.

• Comprehensive experiments and analyses using data collected from both CP

and healthy participants. Various training strategies of the proposed hierarchical

architecture are explored, and an analysis of simulating fewer IMUs demonstrates

the applicability and efficacy of our method on smaller sensor sets.

6.1 Challenges in Continuous Data
The EmoPain dataset contains full-body movement data continuously captured from

chronic pain (CP) and healthy participants during sequences of movements reflecting

everyday activities. We refer to these as activities-of-interest (AOIs) since they were

chosen by physiotherapists as particularly demanding for people with CP and likely

to trigger protective behavior.

While this dataset was not collected in the wild, participants performed each

activity without how-to instruction, and transitions between AOIs further created

noise typical of in-the-wild data collection. During transition periods, participants

could rest according to their needs or enjoy casual movements such as stretching,

walking, and self-preparation. An illustration of a complete data sequence of one CP

participant with the activity and behavior annotations is shown in Fig 6.1.

The proportion distribution of protective behavior samples within each activity

instance across all participants with CP is presented in Figure 6.2. As shown, most

protective samples are labeled within the AOIs, while only a few transition samples

are labelled as protective behavior. This is because many of the transition periods

include relaxing movements that people adopt on their own as they took a break

from the instructions.

The boxplots also present noticeable individual differences within a same

activity type, e.g., some people show more protective behavior during sit-to-stand
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Figure 6.1: An example of the full data sequence from a CP participant, comprising AOIs
and transitions. Lines are red, green, and blue for the x, y, and z coordinates
data, respectively. Protective behavior labels (majority-voted) are shown below
the sequence.

Figure 6.2: The proportion of protective behavior in each activity type across all the partici-
pants with CP.

than others. One of the challenges we aim to address in this chapter is the varying

contexts of protective behavior in the continuous data, which is the different types of

activity background.

For the continuous processing of a sequence, the presence of different activity

types alters the way protective behavior is presented, making it more difficult for the

model to learn to detect it. Inspired by the studies reported in Chapter 2 that adopt

context recognition to aid the task-of-interest [85, 88, 90], we also explore how to

improve the PBD in continuous data with a scheme to automatically recognize its

context of activity background.

Another challenge we shall handle is the class imbalance, which is also the

direct picture of a long data sequence comprising AOIs or events-of-interest. For

data in EmoPain dataset, protective behavior samples only take up 21.09% in average

across all the CP participants. Class imbalance also exists among different activity
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Figure 6.3: The average distribution of (a) activity classes in the entire dataset and (a)
protective behavior across all the CP participants.

types, as shown in Figure 6.3. Resting and preparation periods in transition for a new

activity are typical for people with CP, and may indeed reflect a large part of real-life

data sequences. Toward this, we propose to use a loss function referred to as CFCC

loss to alleviate class imbalances of continuous data during the model training.

6.2 Method

An overview of our proposed architecture is presented in Figure 6.4. Both HAR

and PBD modules receive the same consecutive frames. These are extracted with a

sliding-window from the data sequence collected with 18 IMUs. For HAR module,

the activity type label (5 AOIs plus transition) is used for training, whereas for PBD

the protective behavior label (absence and presence) is used. In addition, the first

module (HAR) aims to recognize the type of activity being performed and pass such

information to the second module (PBD) that detects the presence or absence of

protective behavior.

For our main experiments, the HAR module is pre-trained with activity labels on

the same folds of data during each round of leave-one-subject-out validation (LOSO)

used for PBD. The weights of the HAR achieving the highest activity recognition

accuracy is saved. The HAR module is frozen with such pre-trained weight loaded

when used in the hierarchical architecture. Therein, the activity classification output

is concatenated with the same piece of input frame and passed to train and test the

PBD module using labels of protective behavior.

We use this frozen (optimized) HAR module to better understand the benefit of

using the proposed hierarchical HAR-PBD architecture. Further analyses using a
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Figure 6.4: The proposed hierarchical HAR-PBD architecture, comprising the human activ-
ity recognition (HAR) module and protective behavior detection (PBD) module.
By default, using the same data input, the HAR module is pre-trained with activ-
ity labels and frozen with weights loaded during training of the PBD module.

non-frozen HAR module are reported at the end of the chapter. To the best of our

knowledge, this is the first implementation to leverage HAR to explicitly inform

another concurrent task on the same data.

Both modules in our proposed architecture use a similar network comprising

graph convolution (GC) and LSTM layers. The GC layer is used to model the body

configuration information collected from 18 IMUs. Meanwhile, LSTM is used to

learn the temporal dynamics across graphs corresponding to the body movement

at different timesteps, critical for both HAR and PBD (e.g. hesitation slows down

movements, and fear of pain or perceived pain lead to difference in timing of body-

part engagement for the same activity).

6.2.1 The GC-LSTM Network for HAR and PBD Modules

In the previous chapters, we reviewed and explored deep learning methods proposed

at earlier stages for activity recognition, e.g. vanilla neural networks and architectures

designed considering the spatial configuration of the sensor/joint network. Perfor-

mance improvements achieved by these methods suggest that body configuration

information is important for activity recognition as well as PBD.
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For both HAR and PBD modules in our proposed architecture, a network

integrating GC and LSTM layers is used, referred to as HAR/PBD GC-LSTM. There

are three considerations for the design of HAR/PBD GC-LSTM.

• The limited size of the EmoPain dataset in comparison with popular visual HAR

benchmarks [6, 70] that have been used to evaluate GCNs, making it difficult to

adopt more complex existing implementations.

• The need to verify if the graph representation is indeed capable of improving PBD,

which requires using GCN as a way to learn data representations and removing

unnecessary designs, e.g. embedding GCN into LSTM.

• The need to connect the HAR module with the PBD module, which requires the

GC-LSTM network to tolerate the fusion of activity information and movement

data at input level.

In this work, we focus on a conceptually simple implementation that builds

parallel connection between GC and LSTM layers as the basic component in our

architecture. Such design is helpful to verify the advantage of using a graph rep-

resentation to model data from multiple IMUs in the context of HAR and PBD.

Explorations of GC-LSTM variants may further improve performances, but are out

of the scope of this thesis, since they are merely the backbone in our model.

Graph Input. As we described in Chapter 3, at each timestep, the EmoPain dataset

provides 3D coordinates of 22 body joints that were calculated from the raw data

stored in a Biovision Hierarchy (BVH) format.

Graph Notation. A body-like graph is built to arrange each of the 22 joints to be a

node connected naturally in the graph to the other joints, as shown in Fig 6.5. We de-

note the graph as G = (V,E), with a node set V {t, i}= {υti | t = 1, ...,T ; i = 1, ...,N}

representing the N nodes of a graph at timestep t within a graph sequence of length

T , and an edge set E representing the edges connecting the nodes in this graph.

Since in this work independent LSTM layers are used to learn the temporal dynamics

across graphs at different timesteps, the inter-skeleton edge (usually represents the
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Figure 6.5: The built graph input at a single timestep, where each node represents a human
body joint. The blue contour marks the neighbor set (receptive field) of the
centered node in green.

temporal dynamics) connecting consecutive graphs is not leveraged. Therefore, only

the intra-skeleton edge (representing the connection of body joints) is considered

with E {i, j} =
{(

υti,υt j
)
| (i, j) ∈ B

}
, where B is the set of naturally connected

nodes (joints) of the human body graph.

An adjacency matrix A ∈ {0,1}N×N is used to identify the edge E between nodes,

where Ai, j = 1 for the connected i-th and j-th nodes, and 0 for disconnected ones. A

stays the same for all the tasks in this work. In other words, the basic configuration

of a graph is independent of time and participants, while the relationship between

different body parts in different activities is learned during training. The identity

matrix is IN ∈ {1}N×N , a diagonal matrix that represents the self-connection of each

node in the graph. With the adjacency matrix A and identity matrix IN , the body

configuration is represented by matrices and can be processed by neural networks.

The feature of each node in a graph at timestep t is stored in a feature matrix XG
t ∈

RN×3. The raw feature of each node is the coordinates of the respective body joint,

denoted as XG
υti = [xti,yti,zti]. The neighbor set of a node υti is denoted as N (υti) ={

υt j | d(υti,υt j)≤ D
}

, with the distance function d(υti,υt j) accounting for the

number of edges in the shortest path traveling from υti to υt j and threshold D defining

the size of the neighbor set. Following previous studies [77, 78, 79, 80, 81, 33], we

set D = 1 to adopt the 1-neighbor set of each node.

Graph Convolution. Basically, a GC comprises two parts, one defines the way to



6.2. Method 124

sample data from the input graph and the other concerns assigning learnable weight

to the sampled data. It should be noted that a higher-level knowledge about the

subset of body parts relevant to specific activities is not manually provided in the

network. Therefore, only low-level rules like sampling and weighting are defined in

the GC, which allows the network to develop its understanding about the movement.

In our case, the GC needs to conduct sampling on the full-body graph comprising 22

nodes. Following the derivation of GCN presented in [77], the GC used in this work

can be written in detail as

f GC
out (υti) = ∑

υt j∈N (υti)

1
Zti(υt j)

f GC
in (PGC(υti,υt j)) ·wGC(lti(υt j)), (6.1)

where PGC(υti,υt j)= υt j is the graph-adapted sampling function with d(υti,υt j)≤ 1,

wGC(υti,υt j) = w′(lti(υt j)) is the graph-adapted weight function with lti(υt j) =

d(υti,υt j), w′ is the trainable weight matrix, f GC
in is the input feature of the sampled

node set at current layer while f GC
out is the output feature of the respective centered

node υti, and Zti(υt j) = card({υtk | lti(υtk) = lti(υt j)}) is a normalization term

representing the cardinality of the partitioned subsets in the neighbor set. The 1-

neighbor set N (υti) = {υt j | d(υti,υt j)≤ 1} is applied to be the receptive field of

each node υti, as depicted by the blue contour in Fig 6.5.

Within the weight function, the partition function lti : N (υti)→{0, . . . ,K −1} can

be used under different strategies, while in our work the distance-partitioning strategy

[77] is adopted that divides the 1-neighbor set N (υti) into two subsets, namely the

centered node υti and the remaining neighbor nodes υt j | d(υti,υt j)≤ 1. As a result,

we have K = 2 subsets thus lti(υt j) = d(υti,υt j). By using the distance-partitioning

strategy, Zti(υt j) equals to the number of all the neighboring nodes υt j within the

same neighbor set because they are within the same subset as well.

Using the adjacency matrix A and identity matrix IN , we follow the forward-passing

formula presented in [122] to implement the GC used in this work as

fGC
out = Λ̂

− 1
2 ÂΛ̂

− 1
2 fGC

in W, (6.2)
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where Â = A + IN represents the inter- and self-connection of each node, and

Λ̂ii = ∑ j Âi j is a diagonal degree matrix of Â. Since Λ̂ is a positive diagonal matrix,

the entries of its reciprocal square root Λ̂
− 1

2 are the reciprocals of the positive square

roots of the respective entries of Λ̂. Each diagonal value in the degree matrix Λ̂

counts the number of edges connecting the respective node in the graph described

by Â. Such transformation from A to Â is in accord with our choice of distance-

partitioning [77], where each neighbor set is divided into two subsets for weight

assignment, namely the center node (IN) and the neighbor nodes (A). fGC
in is the input

feature matrix, and fGC
in = XG

t at the first layer of input level. W is the layer-wise

weight matrix.

Connecting Graph Convolution with LSTM. For each module, the input to a single

unit of the first LSTM layer is the concatenation of the GC output from all the nodes

in the graph G at timestep t, denoted by fGC
out (X

G
t ) = [ f GC

out (υt1), . . . , f GC
out (υtN)]

⊤. For

the adopted forward-processing LSTM layer, the computation at each LSTM unit

is repeated to process the information across graphs from the first timestep to the

last. Such conceptually-simple design involving the GC only as a way to learn

representations enables us to empirically study its impact on PBD performances.

In comparison, another study embedded GC within the LSTM unit [79]. While

this may improve the performance, it becomes more difficult to differentiate the

advantage of each component. Additionally, some works proposed to improve

performances by using extra computational blocks (e.g. fully-connected layers or

attention mechanisms [78, 124]) between GC and LSTM layers, which in turn add

more trainable parameters to the network that could lead to over-fitting on smaller

datasets like ours. Nevertheless, we believe the improvement of the backbone would

increase the performance of the entire architecture. We leave this to future works.

6.2.2 Hierarchical Connection of HAR and PBD Modules

Up until this point, the GC-LSTM network used in each module of our proposed

architecture has been defined. Here, we describe how to connect HAR and PBD.

In each module, a fully-connected softmax layer is added to the GC-LSTM
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network for classification. Let the probability toward each class of the current input

frame to be P = [p1, . . . , pK] with K denoting the number of classes, and the one-hot

prediction to be Y . K is 6, including the 5 AOIs and transition class for the HAR

module, and is 2 for protective and non-protective behavior of the PBD module.

In our proposed architecture, to provide activity-informed input from HAR to

PBD, a node-wise concatenation is used where the predicted activity label Y HAR is

added to the input matrix XG
υti = [xti,yti,zti] of each node of the graph input for PBD

(see Fig 6.4). Namely, for the PBD module, activity-informed input feature matrix

at a node υti of a single graph is XG,PBD
υti = [XG

υti,Y
HAR]. Since the raw graph input

fed to the PBD module is joined by the output of the HAR module, we call such a

hierarchical connection between the two.

6.2.3 Addressing Class Imbalances with CFCC Loss

A problem with datasets targeting real-life situations is class imbalance (e.g. datasets

for HAR [67, 65, 66]). In the case of the EmoPain dataset, protective behavior is

sparsely spread within the AOIs of a movement sequence, while it is generally absent

during transitions (see Fig 6.2). Specifically, on average the AOIs represent only

31.71% of a participant’s data sequence, with the rest being transition activities.

Furthermore, on average, samples labelled as protective represent only 21.09% of a

patient’s data sequence, with the rest labelled as non-protective (see Fig 6.3).

Typical approaches used to address class imbalance include: i) data re-sampling

for each class, where samples are either duplicated from the less-represented class or

randomly sampled from the majority class [125]; ii) loss re-weighting, e.g. setting

higher weights for the loss computed from less-represented class and lower weights

for the loss computed from majority class [126]. Unfortunately, these methods

require interferences with data samples directly that could harm the training of

a model [127], e.g. misclassifying samples of the majority class to be the less-

represented class given the hard manual inference.

In our work, we propose to use a loss function that directly alleviates class

imbalance during training. Normally, for the supervised learning conducted in our
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modules, the following categorical cross-entropy loss (CCE) [128] is used

Lcategorical(P,Y ) =−Y log(P) , (6.3)

where P = [p1, . . . , pK] is the predicted probability distribution of an input frame

over the K classes, and Y is the respective one-hot categorical ground truth label

with Y (k) = 1 only for the ground truth class k.

During training, the loss computed for each frame is added up to be the total loss

for the model to reduce. Such function tends to bias the model to put more attention

on decreasing the loss in the majority class and ignore the (mis)classification of

the less-represented classes (e.g. the AOI classes in the HAR task or the protective

behavior class in the PBD task).

To address this, we took inspiration from the research on automatic object

detection. In the object detection, a binary-class imbalance usually exists given the

smaller area covered by the object-of-interest and the larger objectless background.

Two practical approaches proposed to solve such an issue are found, namely the

focal loss [129] and the class-balanced term [127]. Based on binary cross-entropy

loss [128], focal loss applies a sample-wise factor function to adjust the loss weight

for a sample based on its classification difficulty (judged by the predicted probability

toward the ground truth class). The focal loss (FL) together with binary cross-entropy

loss (CE) can be written as

LFL(p,y) = (1− pGT)
γLbinary(p,y) =−(1− pGT)

γ(y log(p)+(1− y) log(1− p)), (6.4)

where p is the predicted probability toward the positive class of the current data

sample, y is the binary ground truth indicator with 1 for the positive class and 0 for

the negative class, pGT = yp+(1− y)(1− p) is the predicted probability toward the

ground truth class. As we can see, the factor (1− pGT )
γ with tunable hyperparameter

γ ≥ 0 is added to the original binary cross-entropy loss. The intuition is to reduce

the loss computed from data samples that are well-classified, while the threshold

for judging this needs to be tuned given different datasets and is controlled by γ .

The increase of γ will reduce the threshold, then data samples with comparatively
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lower classification probabilities toward the ground truth class would be treated as

the well-classified.

In [127], the authors further revised the vanilla cross-entropy loss by adding

a class-wise loss weight to each class based on the so-called effective number of

samples within it. For class c, the effective number of samples is denoted as Enc =

1−β nc

1−β
, with a hyperparameter β ∈ [0,1) controlling how fast the effective samples

number Enc grows when the actual number of samples nc increases. Practically,

β = nc−1
nc

. The class-balanced term is the reciprocal of Enc , written as

1
Enc

=
1−β

1−β nc
. (6.5)

Unlike the binary imbalance caused by the area of object and its useless back-

ground, in the HAR module, class imbalances exist among the 6 categories of activity,

while in PBD both protective and non-protective classes share the same importance.

Therefore, to adapt the focal loss and class-balanced term to scenarios of HAR and

PBD, we replace the CE with CCE and combine the Equation 6.3-6.5 as

LCFCC(P,Y ) =− 1−β

1−β nk
(1−Y P)γY log(P), (6.6)

where nk is the number of frames of the ground truth class k for the current input

frame. This revised function, referred to as Class-balanced Focal Categorical Cross-

entropy (CFCC) loss, will be used in our study.

To the best of our knowledge, this is the first time for such a combination to be

used for the computation of multi-class categorical cross-entropy loss in HAR and

PBD. With CFCC loss, we aim to alleviate class imbalances during training and also

to understand its impact in comparison with the other component of our architecture.

6.3 Experiment Setup

In this section, we provide more details about the data preparation, validation method,

metrics, and model implementations.
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6.3.1 Data Preparation

Here, we briefly present the data preparations as follows.

Continuous Data Segmentation with Sliding-Window. Using a sliding window

of 3s long and 50% overlapping ratio, each data sequence of a complete trial of

a participant is segmented into consecutive frames from the start of the first AOI

to the end of the last AOI/transition activity. The window length and overlapping

parameters are based on the evaluation studies reported in Chapter 4.

At timestep t, we have an input graph Gt = (Vt ,Et), represented by the input data

matrix XG
t , constant adjacency matrix A ∈ {0,1}22×22, and its identity matrix I22,

where XG
υti = [xti,yti,zti] ,υti ∈Vt . These matrices only represent the graph structure

and 3D joint coordinates data of each joint.

Ground Truth for Training. The activity class ground truth, i.e., one-leg-stand,

reach-forward, sit-to-stand, stand-to-sit, bend-down, and the transition, of a frame is

defined by applying majority-voting to the 180 samples within it.

The protective behavior ground truth of a frame is decided by a binary majority-

voting with 50% threshold across the 4 domain-expert raters in accord with Chapter

4 and 5.

Data Augmentation. Following Chapter 4 and Chapter 5, we apply jittering and

cropping for data augmentation. For jittering, the normal Gaussian noise is globally

applied with standard deviations of 0.05 and 0.1 separately to the original data

sequence. For cropping, data samples at random timesteps and joints are set to 0 with

selection probabilities of 5% and 10% separately. Each single augmentation method

would create two extra augmented data sets, which are only used in the training set.

The original number of frames produced with the sliding-window segmentation from

all participants is approximately 6,200, and is increased to around 31K after the

augmentation.

6.3.2 Validation Method and Metrics

For all the experiments, a LOSO cross validation is applied across the 18 folds of

participants with CP. This is because we observed that accuracies acquired at healthy
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participants are almost 100%, thus to avoid biasing the average performance we do

not build LOSO folds with the healthy participants for testing.

For HAR, we report accuracy and macro F1 score to account for performances

of all classes. For PBD, as it is a binary task suffering from class imbalance, we

additionally use the protective-class classification output of all folds to plot precision-

recall curves (PR curves) and report the area-under-the-curve (PR-AUC) [130].

6.3.3 Model Implementations

A search on number of layers, convolutional kernels, and hidden units for the GC-

LSTM network is conducted to identify the suitable hyperparameter set for HAR and

PBD modules separately: i) for HAR, we use one GC layer with 26 convolutional

kernels, three LSTM layers with 24 hidden units of each, and one fully-connected

softmax layer with 6 nodes for output; ii) for PBD, we use three GC layers with

16 convolutional kernels of each, three LSTM layers with 24 hidden units of each,

and one fully-connected softmax layer with 2 nodes for output. A dropout layer

with probability of 0.5 is added to each GC layer and LSTM layer to alleviate the

overfitting risk for all the models.

If not mentioned, the default loss used for all the models is the vanilla categorical

cross-entropy loss written in Equation 6.3.

In CFCC loss, the class-balanced term does not vary per sample, instead it is

acquired for a class given the number of samples therein, so is computed and fixed

before network training. Thereon, we further conduct a hyperparameter search on

γ = {0,0.5,1,1.5,2,2.5} for both tasks separately using the respective HAR or PBD

module alone. We find γ = 0.5 to be suitable for HAR, and γ = 2 for PBD. Given

the number of samples per class nc, we set β = nc−1
nc

.

The Adam algorithm [102] is used as optimizer for all the models, while the

learning rate is set to 5e−4 for the HAR module and 1e−3 for PBD module, after

another search on lr = {1e−5,5e−5,1e−4,5e−4,1e−3,5e−3}. The number of epochs

is set to 100 for all the models.

During the hyperparameter search, a hold-out validation is adopted where 11

healthy and 17 CP participants are randomly selected to be the training set, with the
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rest left out for validation. The validation data is then removed for the respective

LOSO experiments. The aim of the hyperparameter search is to determine a proper

set of hyperparameters to aid the following experiments, instead of mining the

optimal hyperparameters for the dataset.

6.4 Results
The evaluation concerns several components of our proposed hierarchical HAR-PBD

architecture, namely the use of graph representation, CFCC loss, and the hierarchical

architecture connecting HAR and PBD modules. We conclude by evaluating differ-

ent training strategies of the hierarchical architecture, and its performances under

different sizes of the body graph input.

6.4.1 Contribution of Graph Representation to PBD

The first aim of our evaluation is to understand the contribution of graph representa-

tion in comparison with other learning approaches to the PBD performance. Hence,

we conduct a set of experiments using the PBD module alone, without the use of the

entire hierarchical architecture and CFCC loss.

The evaluation is conducted against the stacked-LSTM and BANet that we

explored in the previous chapters, which either take i) joint angles and energies; or

ii) 22 pairs of 3D joint coordinates as input. For stacked-LSTM, at each timestep

we merely concatenate the coordinates of 22 joints to form the input matrix with a

dimension of 22×3 = 66. Accordingly, the input structure of BANet is adapted for

22 pairs of coordinates, as illustrated in Fig 6.6. The search on number of LSTM

layers, hidden units, and learning rates is also conducted for the two comparison

Figure 6.6: Input structures of (a) the original BANet, and (b) the adapted BANet for 22
pairs of 3D joint coordinates.
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Table 6.1: PBD results with 95% confidence intervals of different representation learning
methods. The best method is marked in bold.

Methods Acc Macro F1 score PR-AUC
Stacked-LSTM (angle+energy) 0.79±0.066 0.61±0.055 0.23
BANet (angle+energy) 0.78±0.067 0.56±0.053 0.24
Stacked-LSTM (coordinate) 0.80±0.046 0.64±0.055 0.32
BANet (coordinate) 0.79±0.066 0.63±0.074 0.27
PBD GC-LSTM 0.82±0.057 0.66±0.061 0.44

models respectively under each input condition.

Differently from their original studies that relied on pre-segmentation of activity

instances, both methods are applied here over the full data sequences in a continuous

manner. Results are reported in Table 6.1 with PR curves plotted in Fig 6.7.

As shown, the PBD GC-LSTM produces the best accuracy of 0.82, macro F1

score of 0.66, and PR-AUC of 0.44. The actual difference between these compared

methods is the way the input data is processed with, i.e., traversal processing (stacked-

LSTM), local processing (BANet), and graph representation (PBD GC-LSTM). As

such, the results suggest that the graph representation may indeed contribute to

improving the continuous detection of protective behavior. Still, the below-chance-

level (< 0.5) results of PR-AUC of all methods demonstrate the difficulty of PBD

in continuous data sequences. This implies the need to further improve continuous

PBD with HAR and CFCC loss.

Figure 6.7: PR curves of different representation learning methods.
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6.4.2 Contribution of CFCC Loss and HAR

Through an ablation study, we first investigate the contribution of CFCC loss alone

in dealing with the imbalanced data for each module of our proposed architecture.

We then use our proposed hierarchical architecture to understand the impact of

activity-class information produced by the HAR module on PBD performance. In

particular, we aim to understand if recognizing the activity background has more

impact on improving PBD in continuous data sequences, in comparison with the

issue of class imbalances during training.

Contribution of CFCC Loss to Continuous HAR. In our proposed hierarchical

HAR-PBD architecture, the HAR GC-LSTM together with CFCC loss was firstly

pre-trained on the same set of data using activity labels. Then, the set of weights

achieving the best activity recognition performance was saved and frozen during the

training of the entire architecture.

For the training and testing of the hierarchical architecture, the HAR output was

used as auxiliary information to contextualize the PBD. Therefore, the accuracy of

the HAR module is important for the PBD module. Here, we analyze the performance

of the HAR GC-LSTM alone, with and without using CFCC loss. The results are

reported in Table 6.2, with confusion matrices shown in Fig 6.8.

The CFCC loss leads to a higher macro F1 score (0.81 vs. 0.79) in the continu-

ous HAR. Judging from the confusion matrices, CFCC loss reduces the classification

bias toward the most represented class (the transition activity), which resulted in

a lower accuracy though (0.88 vs. 0.89). These results show the effectiveness of

CFCC loss for balancing multi-class categorical loss computation, which was not

directly evaluated in the original studies [129, 127]. The computation of CFCC

loss is independent of learning models and requires the only prior knowledge of the

Table 6.2: HAR results with 95% confidence intervals of the ablation study. The best method
is marked in bold.

Methods Acc Macro F1 score
HAR GC-LSTM 0.89±0.028 0.79±0.052
HAR GC-LSTM with CFCC loss 0.88±0.027 0.81±0.038
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Figure 6.8: Confusion matrices of a) HAR GC-LSTM and b) HAR GC-LSTM with
CFCC loss, where the bias toward the majority class of transition is balanced.
OLS=one-leg-stand, RF=reach-forward, SITS=sit-to-stand, STSI=stand-to-sit,
and BD=bend-down. The improvement on the less-represented class is obvious
for the four classes in the middle.

number of samples per class. Therefore, CFCC loss should be useful for HAR tasks

on relevant datasets.

Contribution of CFCC Loss to Continuous PBD. Here we investigate the contribu-

tion of CFCC loss to continuous PBD using the PBD GC-LSTM. The input to PBD

GC-LSTM is the 3D joint coordinates data without activity-class information. As we

can see from the results in Table 6.3, the use of CFCC loss leads to 5% improvement

in macro F1 score (macro F1 score of 0.71 vs. 0.66). Confusion matrices shown

in Fig 6.9 (a)(b) suggest that the CFCC loss does indeed help penalize the bias

toward the more frequent class (non-protective class in this case) while improving

the recognition of the less-represented one (protective class). However, the PR-AUC

of 0.48 is still below chance level, suggesting that addressing class imbalance alone

is not sufficient.

Proposed Method: Hierarchical HAR-PBD Architecture with CFCC Loss. For

the training and testing of our proposed hierarchical HAR-PBD architecture, the HAR

GC-LSTM within it is frozen and loaded with the weights from its pre-training with

CFCC loss. This is to keep the HAR performance constant and aid the understanding

of the impact of continuously inferred activity information on continuous PBD. The
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Table 6.3: PBD results with 95% confidence intervals of the ablation study.

Methods Acc Macro F1 score PR-AUC
PBD GC-LSTM 0.82±0.057 0.66±0.061 0.44
PBD GC-LSTM with CFCC loss 0.83±0.046 0.71±0.059 0.48
Hierarchical HAR-PBD architecture 0.84±0.053 0.73±0.053 0.52
Hierarchical HAR-PBD architecture with CFCC loss 0.88±0.028 0.81±0.030 0.60

results are reported in Table 6.3, with confusion matrix shown in Fig 6.9 (c).

It is interesting to see that our proposed hierarchical HAR-PBD architecture

using vanilla categorical cross-entropy loss achieved an improvement of 2% with

respect to the PBD GC-LSTM alone using CFCC loss (macro F1 score of 0.73 vs.

0.71). The PR-AUC of 0.52 is also above chance level. Such result shows that the

contextual information of activity type contributes to continuous PBD, with our

proposed hierarchical HAR-PBD architecture being a practical way for this.

Furthermore, by adding CFCC loss to the PBD module of the hierarchical HAR-

PBD architecture, higher macro F1 score of 0.81 and PR-AUC of 0.60 are achieved

(confusion matrix shown in Fig 6.9 (d)). The PR curves for the PBD ablation study

are plotted in Fig 6.10. These results add to our previous finding and show that using

a mechanism (CFCC loss in our case) to address the class imbalance problem led

to a further-clear improvement. In general, our experimental results suggest that

both the activity type information and CFCC loss are necessary for continuous PBD,

despite one being more effective than the other.

Figure 6.9: Confusion matrices for PBD methods in the ablation study. NP= non-protective,
P=protective. The improvement on the protective class is obvious.
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Figure 6.10: PR curves of different PBD methods in the ablation study.

6.4.3 Comparison of Training Strategies

In the previous subsections, the HAR module used in hierarchical HAR-PBD archi-

tecture was pre-trained with the same training data using activity labels and frozen

to adopt the model of the best activity recognition performance. The aim was to

understand the contribution of HAR to PBD across the different configurations.

Here, we further explore the relationship between HAR and PBD modules by

exploring joint-training strategies of the hierarchical architecture. In joint-training of

the architecture, the HAR module would not be frozen, but the activity labels are

still used to update it when the PBD module is trained. Specifically, the protective

behavior labels of the same data input together with the output of HAR module are

used to train the PBD module.

Thereon, we compare the following four joint-training strategies together with

the use of CFCC loss.

i) Joint HAR(CFCC)-PBD and Joint HAR-PBD(CFCC), where HAR and PBD

modules are initialized and trained together using activity and protective behavior

labels respectively, with CFCC loss only added to either the HAR or PBD module;

ii) Joint HAR-PBD with CFCC, where CFCC loss is added to both modules in such

joint training;

iii) Pre-trained Joint HAR(CFCC)-PBD and Pre-trained Joint HAR-PBD(CFCC),
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similar to (i) where the only difference is that the HAR module is first trained

alone with activity labels using CFCC loss to achieve the best activity recognition

performance and then its training continues with the training of the PBD module;

iv) Pre-trained Joint HAR-PBD with CFCC, where CFCC loss is added to both

modules in the joint training of (iii).

For all these joint training strategies, the loss weights are set to {1.0,1.0} for

both HAR and PBD modules. If CFCC loss is not mentioned, the loss used for the

respective module is the vanilla categorical cross-entropy loss. We also compare

them with our default method used in previous subsections, here referred to as

Pre-trained HAR(Frozen)-PBD(CFCC), where the HAR module is first trained

alone with activity labels and CFCC loss to achieve the best activity recognition

performance per LOSO fold, then it is frozen with weights loaded and used in the

hierarchical architecture for training and testing of the PBD module. Results are

reported in Table 6.4, with the PR curves for PBD results plotted in Fig 6.11.

Without pre-training the HAR module, the best HAR, with macro F1 score of

0.56, and PBD performances, with macro F1 score of 0.74 and PR-AUC of 0.55, are

achieved by the joint HAR-PBD(CFCC). However, by adding CFCC loss to the HAR

module alone (joint HAR(CFCC)-PBD), the performances are reduced notably for

the HAR and slightly for PBD. One explanation could be that the error passed back

from the PBD module harmed the HAR performance, especially when such error of

PBD was not well handled, e.g., without using CFCC loss. In addition, by adding

CFCC loss to both modules (joint HAR-PBD with CFCC), the HAR performance

achieved of macro F1 score of 0.54 is comparable to joint HAR-PBD(CFCC) but the

Table 6.4: HAR and PBD results with 95% confidence intervals for different training strate-
gies of the Hierarchical HAR-PBD architecture, the best method is marked in
bold.

HAR PBD
Training strategies Acc Macro F1 score Acc Macro F1 score PR-AUC
Joint HAR(CFCC)-PBD 0.62±0.083 0.42±0.066 0.85±0.036 0.70±0.063 0.54
Joint HAR-PBD(CFCC) 0.76±0.045 0.56±0.065 0.84±0.047 0.74±0.042 0.55
Joint HAR-PBD with CFCC 0.66±0.063 0.54±0.077 0.81±0.059 0.71±0.057 0.45
Pre-trained Joint HAR(CFCC)-PBD 0.68±0.040 0.55±0.044 0.85±0.036 0.74±0.034 0.58
Pre-trained Joint HAR-PBD(CFCC) 0.84±0.047 0.73±0.073 0.87±0.034 0.79±0.039 0.58
Pre-trained Joint HAR-PBD with CFCC 0.72±0.043 0.64±0.061 0.85±0.030 0.76±0.045 0.55
Pre-trained HAR(Frozen)-PBD(CFCC) 0.88±0.028 0.81±0.030 0.88±0.027 0.81±0.038 0.60
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Figure 6.11: PR curves of the hierarchical architecture under different training strategies.

PBD performance is much lower, with macro F1 score of 0.71 and PR-AUC of 0.45.

Given the current hierarchical architecture, such results suggest that alleviating class

imbalance in PBD has a stronger impact on the overall performance in joint training,

while addressing it in HAR would somehow penalize the PBD performance.

Rather than to start joint training from scratch, we further look into the uses

of pre-training of the HAR module to reach an initial best activity recognition

performance of macro F1 score of 0.81 before joint-training. A similar outcome as

above is observed where the best performance is achieved by adding CFCC loss to

the PBD alone. Once again, this proved the higher impact of alleviating the class

imbalance of PBD, as the error passed back from the PBD module could harm the

training of HAR module. In general, the results show that a pre-training of the

HAR module improved the final performances of both HAR and PBD modules in

comparison to the ones without it.

The performances achieved by the various joint-training strategies of the hierar-

chical architecture are still lower than the one of freezing the HAR module as used
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in previous subsections, for both HAR, with macro F1 score of 0.81, and PBD, with

macro F1 score of 0.81 and PR-AUC of 0.60. It should be noted that this method is

a two-stage process in training and an end-to-end process in inference.

Although these results highlight the importance of HAR performance to PBD,

they also suggest that the error propagated back from the PBD module in joint-

training was not informative to improve the HAR performance. This highlights the

need to further investigate the interaction scheme between HAR and PBD modules,

beyond straightforward error back-propagation. This is left for future work.

6.4.4 Simulating Fewer IMUs

Until this point, we have assumed all 18 IMUs to be available to enable the input of

a full-body graph. In this experiment, we quantify the fluctuation in performance

when fewer IMUs are available. We simulate the limited availability of IMUs by

removing nodes (containing data of respective joints) from the full-body graph.

According to the study on human observation of protective behavior [19],

protective movement strategies are often visible on both sides of the body, even if

via different patterns. For example, a twisting of the trunk to reach for a chair may

lead to a narrower angle between the arm and the trunk on one side but a larger angle

between another arm and the trunk. Therefore, a one-side sensor set of 14 nodes

is created, where nodes number of 2-4 and 10-14 on the left limbs of the full-body

graph are removed.

Figure 6.12: Graph structures of the four sensor sets. The blue contour marks the neighbor
set of each centered node that colored in green.
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Second, to simulate an even more compact sensor set, we further remove nodes

number of 6, 8, 15, 17, 18, 20, and 21 from the one-side sensor set, resulting in a

smaller one-side sensor set of 7 nodes. Additionally, from the full-body graph, we

symmetrically remove nodes number of 3, 4, 6, 7, 8, 10-13, 15-18, 20, and 21 from

both body sides to create a smallest symmetric sensor set with 7 nodes as well. The

graph structures of these sensor sets still reflect human body connections, as shown

in Fig 6.12.

The hierarchical HAR-PBD architecture with CFCC loss is used here on the

graph input extracted from each sensor set. For a fair comparison, we report the

results achieved in another optimization search that used to determine the suitable

hyperparameters under each condition. The HAR and PBD results of each sensor set

are shown in Fig 6.13, with PR curves for the PBD results plotted in Fig 6.14.

Although the best PBD performance is obtained by using the default graph

input of 22 nodes (macro F1 score of 0.81 and PR-AUC of 0.60), competitive results

are achieved using the one-side graphs with number of nodes reduced to 14 (macro

F1 score of 0.77 and PR-AUC of 0.55) and even 7 (macro F1 score of 0.76 and PR-

AUC of 0.53). These results are better than the ones achieved using the hierarchical

architecture alone without CFCC loss on the full-body graph (macro F1 score of

0.73 and PR-AUC of 0.52).

On the other hand, given the same number of 7 nodes, the worst performance

Figure 6.13: HAR and PBD results of the hierarchical HAR-PBD architecture with CFCC
loss using input of different sensor sets.
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Figure 6.14: PR curves of the hierarchical architecture with CFCC loss using input of
different sensor sets.

is achieved by the smallest symmetric sensor set that follows a general practice of

retaining nodes on both sides of the body (macro F1 score of 0.75 and PR-AUC of

0.51). This shows the advantage of using a knowledge-driven strategy in guiding the

sensor-set reduction, in the context of PBD.

It is empirically verified that the proposed hierarchical HAR-PBD architecture

with CFCC loss leads to improvement even with small sensor sets. In order to further

improve the PBD performance, efforts could be made on i) designing better graph

structure, since in this work we merely employed the human-body connections; ii)

further exploring the configurational pattern of body movement in the context of CP

rehabilitation, given the performance achieved by one-side sensor sets.

6.5 Error Analysis with Visualization
So far, we see improvements and reductions in performances for both the HAR

and PBD modules in the experiments conducted above. Here, to enable an in-

depth understanding of the temporal functioning behavior of the two modules in the

hierarchical HAR-PBD architecture, a visualized example of the model performances

on the data sequence of one CP participant is shown in Fig 6.15. The upper two

diagrams are the ground truth and recognition result of the HAR module, respectively.



6.5. Error Analysis with Visualization 142

Figure 6.15: An example of the ground truth and results of HAR and PBD modules for
data of a CP participant. The upper diagram is showing the ground truth of
activity class and the recognition result by HAR GC-LSTM with CFCC loss.
At the lower diagram, the first row is presenting the ground truth for PBD. ‘M1’
to ‘M4’ are respectively the detection result of i) PBD GC-LSTM; ii) PBD
GC-LSTM with CFCC loss; iii) hierarchical HAR-PBD architecture, and iv)
hierarchical HAR-PBD architecture with CFCC loss.

As shown, on this long data sequence, our HAR GC-LSTM using CFCC loss

achieves good performances without any pre-localization and -segmentation of the

AOIs. The lower five diagrams are the ground truth and results of the PBD module

achieved by the four different methods, respectively.

In the HAR result (upper part of Fig 6.15), the errors are found to be: i)

misclassification of one-leg-stand as transition activity (red rectangles on the left);

ii) misclassification of transition activities as reach-forward and bend-down (red

rectangles in the middle); iii) misclassification of bend-down as stand-to-sit (red

rectangle in the right).

We notice that most misclassified activities were possibly due to their similarity

in execution, given the use of protective behavior by this CP participant. For

instance, the analysis of the on-site recorded video shows that the participant was

unable/unwilling to raise the leg up during one-leg-stand, which is similar to the

transition activity of standing still. During bend-down, the participant was not to

bend the trunk but the leg and reached both arms to the ground, which is similar to

the activity of stand-to-sit.
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We now compare the four PBD approaches (see M1-M4 in the lower part

of Fig 6.15). Without the activity-class information and CFCC loss, the baseline

method of PBD GC-LSTM (M1) misclassified most frames as the majority class of

non-protective behavior, which takes up around 78.91% in the training data. More

protective behavior frames are correctly detected by using CFCC loss (M2), possibly

owing to its ability to drive the model to focus more on the less-represented class,

i.e., the protective behavior class in our case. For this CP participant, M3 is shown

to be more effective than M2 in terms of PBD during stand-to-sit, sit-to-stand, and

bend-down. This could be mainly owed to the activity-type information on these

frames provided by the HAR module. The hierarchical HAR-PBD architecture with

CFCC loss (M4) leads to the best result, especially for PBD during one-leg-stand.

In the PBD result of the hierarchical architecture without CFCC loss (M3), the

misclassified area marked by a red rectangle on the right side of the figure seems

to be affected by the misclassification of bend-down as stand-to-sit in the HAR

module. Such error is corrected by using CFCC loss (M4), possibly because it

forces the model to adaptively down-weight the frames of majority class, i.e., the

non-protective behavior class in our case. However, for the same approach (M4), the

error marked by a red rectangle on the left side is likely to have been affected by the

misclassification of one-leg-stand as transition activity by the HAR module.

These results suggest that i) misclassifications by the HAR module have a

negative impact on PBD performance; ii) and this problem could be minimized by

addressing the class imbalance with CFCC loss in the PBD module. These support

our concept of approaching continuous PBD by addressing the two technical issues

together, namely the contextual information of activity types and the imbalanced

presence of protective behavior in training.

6.6 Summary

In this chapter, we targeted PBD in continuous movement data as the milestone

for using deep learning for CP rehabilitation. We proposed a hierarchical HAR-

PBD architecture with GCN to recognize the varying context of activity to aid the
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simultaneous detection of protective behavior. An adapted CFCC loss was also used

to alleviate class imbalances existed in continuous data during training.

Our evaluation with data from the EmoPain dataset suggested that the activity

type information is effective to aid PBD in continuous data, leading to a notable

improvement over the baseline (macro F1 score of 0.73 and PR-AUC of 0.52 vs.

macro F1 score of 0.66 and PR-AUC of 0.44), and is more impactful than just

solving class imbalances (macro F1 score of 0.71 and PR-AUC of 0.48). The best

result was achieved by combining the hierarchical architecture with CFCC loss, with

macro F1 score of 0.81 and PR-AUC of 0.60. Additionally, we verified that graph

representation improves the PBD performance.

We showed that it is feasible to jointly train the hierarchical HAR-PBD archi-

tecture. However, work is needed to gain mutual improvement between HAR and

PBD modules. Furthermore, we showed the applicability and efficacy of our method

using fewer nodes/joints (macro F1 scores of 0.77 and 0.76 with 14- and 7-node data

input, respectively).

This work was done during 2019-2020, and is published in IMWUT [11]. By

the point of completing this thesis, the work presented in this chapter has received

6 citations (excluding the self-reference by my own works). In a review about

analyzing the gap between emotion and joint action from the perspective of behav-

ioral neuroscience [131], our work was taken as an example to show how advanced

machine learning technique has directly incorporated the learning of contextual

information to aid the detection of affect-related behavior detection.



Chapter 7

Conclusion and Discussion

The development of deep learning and ubiquitous technology is opening a new era

for the provision of healthcare support to people with chronic pain. To contribute to

this innovation trend and novel opportunities, this thesis targeted the important first

step of developing methods for activity-independent continuous automatic detection

of protective behavior with deep learning. We identified and contributed to a series

of research questions, which will not only benefit the development of intelligent

physical rehabilitation systems for people with chronic pain, but also the broader

community working on movement-based tasks.

In this chapter, we summarize the contributions and clarify possible use cases

of our works. We then discuss the current limitations of the methods we proposed,

and conclude by laying out the avenues for future works.

7.1 Summary of Contributions
The key contributions of studies presented above are as follows.

• In Chapter 4, published in [8, 9], we extended the previous state-of-the-art by

showing the feasibility of protective behavior detection using deep learning on

instances of various activity types in a continuous manner. Before this work,

previous studies had focused on activity-dependent feature engineering to overall

estimate the existence of protective behavior per activity instance [19, 56, 12, 29].

Our aim was to explore the possibility to detect where protective behavior occurs

exactly within an instance of activity. The detection of where it occurs allows
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to develop more specific interventions aimed to address the specific part of the

activity that is feared by the person with chronic pain. Our findings brought the

field one step closer to being able to continuously detect pain-relevant behavior in

everyday life without knowing the type of activity in advance.

In addition, the study aimed at addressing critical data processing aspects that are

necessary to apply deep learning. Targeting these points, this work has made the

following contributions. For coping with the limited size of movement-related

clinical dataset, a range of data augmentation strategies and their combinations

were examined. An analysis and discussion of these methods shed light on how

each of them could contribute to protective behavior detection beyond the dataset

used in this thesis. The impact of data segmentation parameters on detection

performance was also analyzed. Despite the fact that the optimal segmentation

window length for protective behavior detection varies depending on the activity

type, we provided a set of criteria for identifying practical parameters that work

across different activity types, demonstrating how our approach could generalize

to other datasets for protective behavior detection or analyzing affect-influenced

movement behavior in general.

• In Chapter 5, published in [10], we explored the use of bodily and temporal atten-

tion mechanisms to better leverage the information that each body part carried at

different stages of a movement. We proposed a novel deep learning model per-

forming spontaneous temporal and bodily subsets learning, given the inspirations

received from the following chronic pain studies.

First, pain literature [21, 23, 30, 31] provided evidence that fears of injury, pain,

and anxiety in chronic pain (chronic pain) cause the individual to engage bodily

parts in ways that are not biomechanically necessary or efficient, but may create

a sensation of control and assist to alleviate fear. Second, from [19] we also

learned that, in designing interventions to improve movement-related self-efficacy

of people with chronic pain, expert observers pointed out how specific body parts

are particularly important to detect the presence or absence of protective behavior.
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Through a range of experiments, we demonstrated that our method can achieve

state-of-the-art results, if not slightly higher, with fewer trainable parameters for the

detection of protective behavior. With attention score visualization and analysis,

we discussed how such mechanisms could facilitate the better understanding

of protective behavior from real-life measurements, rather than just lab-based

observations.

A further evaluation on Skoda dataset [67], typically used as a benchmark for

human activity recognition (HAR) research, showed the good generalizability of

our method (macro F1 score of 0.96 vs. 0.92 [13], 0.91 [65], 0.93 [60], 0.91 [16],

and 0.94 [15]) beyond the detection of protective behavior. In addition, another

wearable HAR study [20] had also contributed to showing how the BANet could

achieve competitive if not better performances in this context against the previous

state-of-the-art models.

• In Chapter 6, for the first time, continuous detection of protective behavior was

studied using data sequences comprising different activity types without pre-

segmentation. This work is published in [11]. Previously, continuous protective

behavior detection had been only established on pre-segmented activity instances.

We proposed a novel hierarchical HAR-PBD architecture to leverage activity

recognition to enable the detection of protective behavior in continuous data

sequences. Protective behavior had been investigated in the past without leveraging

its activity background. Graph convolution (GC) and long short-term memory

(LSTM) layers were combined to model the body-worn inertial measurement units

(IMUs) data for protective behavior detection, while in the past only convolutional

neural networks (CNNs) and LSTMs were applied. It was also adopted for the first

time to show the advantage of graph representation in the context of emotional

bodily behavior across activities.

A loss function referred to as CFCC loss was also employed to alleviate class

imbalances of the continuous data. We further explored various training strategies

of the proposed hierarchical architecture, and conducted an analysis of simulating
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fewer IMUs to demonstrate the applicability and efficacy of our method on smaller

sensor sets.

7.2 Future Use Cases
While the goal of this thesis is not to build a ubiquitous support system already to use

for pain management, our contributions are the key components of such a system,

since performance of protective behavior detection is critical for effective support.

For instance, the contextualization provided by the activity recognition module

used in Chapter 6 not only leads to improved protective behavior detection perfor-

mance, but informs assessment of people with chronic pain and customizes timely

support for self-management. We discuss here the main use cases and further devel-

opments that can exploit our proposed methods to deliver new types of support and

interventions in chronic-pain management and beyond.

7.2.1 In-the-Wild Informed Clinical Rehabilitation

Clinicians need to know about patients’ difficulties in everyday activities outside the

clinic’s safe environment [43], and without relying on self-reported behaviors (e.g.,

diaries), which are commonly used but have low reliability [26] because patients’

awareness of habitual protective behavior and their triggers is low [27].

A ubiquitous system capable of identifying activity context and continually

monitoring protective behavior could help physiotherapists gain a better understand-

ing of the patient’s activity challenges and progress, which typically changes across

activities of interest. Connected to GPS and time, the system could further contextu-

alize the activity with factors that introduce stress, e.g., social pressures estimated

from user’s location. If equipped with attention mechanisms, as we explored in

Chapter 5, the system could also provide some insights about, e.g., the movement of

specific body parts that tend to be more feared by the person.

7.2.2 Patient-Oriented Ubiquitous Self-Management

Because of the complexity of the actual world (environment, social demands, di-

versity of tasks and duties, etc.), as well as interference from emotional states, it
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is normal to have difficulty translating movement strategies learned in the clinic to

everyday life [38].

In [26, 25], a ubiquitous system transforms real-time movements (of specific

body parts) into sound (sonification) to increase awareness in people with chronic

pain of their physical capabilities. This further facilitates the autonomous use of

movement strategies of the user beyond the clinic. If integrated in such a ubiquitous

system, our methods (presented in Chapter 6) could help identify when and what

kind of support is needed, e.g., when the frequency of protective behavior during

specific activities exhibited by specific body parts rises above a certain level; it can

instantly provide reminders about breathing and taking breaks etc. Taking breaks and

relaxation are important pacing strategies to avoid setbacks and prolonged recovery.

During exercise, the system can also provide dedicated suggestions or exercise

plans based on the frequency of protective behavior detected. Actually, a recent effort

following such a trend is seen in [115], where a sonification software is developed

based on the attentional weights of BANet, the model we presented in Chapter 5.

7.2.3 From Chronic Pain to Next-Stage Movement Sensing

Beyond supporting the management of chronic pain, our proposed methods could be

applied in a variety of contexts where ubiquitous activity recognition technology is

being leveraged.

For example, ubiquitous technology is opening the new platform to aid workers

in factory assembly lines [82], to support them in their workspace activities, e.g.

to identify and help correct mistakes, to aid training, and establish human-robot

collaboration. Thereon, another interesting application could be to promote workers’

wellbeing, such as in reducing mental or physical stress. Therein, our methods

(presented in Chapter 6) can be integrated into the system to leverage activity

recognition for detecting cues of fatigue or pain. Such a system could help identify

the need for a break and adjust working timetables. These are essential to minimize

development of musculoskeletal conditions, a common problem in manufacturing

industries. In similar contexts, the number of sensors could be reduced to fit the

specific activities and relevant movements.
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Another active area of application is in healthcare beyond the management of

chronic pain. For instance, in [5], limb movement was assessed to screen perinatal

stroke in infants, while arm movement was analyzed to track everyday rehabilitation

progress of stroke patients [1]. For these, integration of our methods demonstrated

in Chapter 6 in the system could help establish the link between the type of activ-

ity/movement and the behavior category-of-interest (e.g. good or poor rehabilitation

engagement in [1], and even the level of pain or anxiety in the future). Such activity-

aware functions could allow more in-depth understanding of the patient and generate

opportunities for richer personalized support.

7.3 Limitations and Future Work
In this section, we discuss the general limitations the studies conducted so far on this

topic face and the potential ideas for future works.

7.3.1 The Focus on a Coarse Language of Protective Behavior

In this thesis, we considered detecting protective behavior as a single unique class.

However, the work by Keefe et al. [21], Sullivan et al. [31], and the discussion in [12]

show different types of protective behavior with various physical and psychological

contexts, which may provide better insights on how to adapt support offered by

technology. Hence, a future step for this study could be exploring the possibility to

discriminate between different classes of protective behavior.

For example, while guarding a body part appears to be related and appearing

more in specific kinds of movement, stiffness of the same body part usually persists

across different movements and time. Discriminating guarding against stiffness may

help a model decide when to suggest extra exercises to reduce stiffness vs. when to

provide support and exposure to a movement in a way that help overcome fear.

From a machine learning perspective, this suggests that two temporal scales

should be considered in our modeling, one as in our study to explore the movement

during a local period of the day to track the types of activity and the body part of

interest for the behavior judgment. A broader timescale could help instead track if the

anomalous movement behavior persists over days/weeks/months etc., and a summary
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of its existence across a variety of activities. For such, the active development of

the research in multiscale machine learning [132, 133, 134, 135, 136] would provide

rich knowledge and baselines to help use achieve the goal.

An interesting point from the emerging work of Williams et al. [137] is the

discovery of a hierarchy of behavior that physiotherapists observed. That is, the flow

vs. no-flow at a higher-level being defined by a smooth speed across elements of the

movement. From the perspective of protective behavior detection, this raises another

question on how to sense such higher-level language describing movements, with

more categories from the data aspect or refining the engineering of features etc.

7.3.2 Lacking Multi-Modality of Protective Behavior

In our work, we have particularly focused on movement data, with only the first

study (presented in Chapter 6) including the sEMG data. The previous analysis of

protective behavior is multimodal as our literature review reveals, for even when

the person is not performing the activity in an altered way, anomalous muscles

activations can indicate fear of movement [39, 138]. Similarly, previous machine

learning studies have shown that adding sEMG data to movement data improves the

prediction of pain levels [56, 57].

In Chapter 5 and 6, we decided to focus on the movement data alone for

two reasons. In Chapter 5, we desired to understand how the data-driven network

could learn cues that reflect visual observations of physiotherapists when describing

protective behavior. In Chapter 6, we aimed to understand if a network whose

configuration reflects the bodily skeleton structure could improve performance.

The question is now, can the above proposed models be extended to include

sEMG data? Particularly, it would be interesting to explore how to embed sEMG in

the skeleton-like GCN for movement data. Indeed, I have already started to explore

this question through my co-supervision of an M.Sc. thesis [139] in machine learning,

from considering simple integration of extra nodes of the sEMG data to the existing

GCN according to the physical connection of the muscles and the skeleton joints, to

using more complex fusion mechanisms. The results show interesting improvement,

namely macro F1 scores of 0.83 and 0.88 for the late fusion and central fusion
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methods, respectively, vs. 0.81 of our baseline method using movement data alone,

and a paper is in preparation.

Protective behavior and in general bodily movements go beyond merely con-

necting to unique muscle activities. Relevant physiological phenomena such as

respiration may help understand the bodily movement. Indeed, in chronic pain,

due to anxiety, shallow respiration makes movement more difficult, which is also

linked to the increase in muscle tensions. Tensions in facial muscles can also help

control other parts of the body, even if they are not directly useful. According to the

emerging work of Williams et al. [137], breathing patterns and facial expressions

are used widely by physiotherapists to inform their estimation of the patients’ status

and needs, which for us could be incorporated as extra modalities in the next step.

In short, while the majority of physiotherapists expressed enthusiasm in the

literature for using technology-enabled platforms for future patient-physio interaction

[25, 28], enough room is available for technological advancements, such as including

richer modalities (e.g., physiological signals sensing heart rate and skin response)

during data collection and modeling, and enabling oral interaction with the patient

for better engagement.

7.3.3 The Lack of Data

On one hand, the size of existing datasets is very limited for deep learning and

ubiquitous computing research in chronic pain management. On the other hand, data

collected in a research facility provide only a limited understanding of the movement

behavior and capabilities of people with chronic pain. Additionally, it is widely

acknowledged that collecting data from patients is challenging given increasingly

strict data protection regulations and privacy issues.

These are the major problems we face as moving into real-world applications.

In order to fully leverage the existing data, this thesis followed a traditional practice

of adding noise for the purpose of data augmentation [61]. In the broader deep

learning community, researchers in other application areas have started to use more

advanced modeling techniques to solve the issue of limited data size, with methods

proposed like transfer learning via large-scale pretraining phases [140] and zero- and
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few-shot learning [141, 142].

Therefore, while we are planning for the collection of multimodal datasets with

a larger size that considers various living scenarios, studies for the next step may first

explore how may we alleviate the lack of data and possibly lack of annotation from

the modeling perspective. Additionally, new challenges for modeling will also arise

given the arrival of new datasets, where different numbers/types of sensors may be

used for data collection and data may come from different environments. To make

the model work across these different settings, the promising approaches could be

domain adaptation methods [143, 144, 145] and models that consider the varying

quality and even missing of sensors [146, 147].

7.3.4 The Dependence on Manual Annotation

Methods proposed in the above chapters are all supervised-learning methods that rely

on manual annotations, particularly the ground truth majority-voted from domain-

expert ratings of protective behavior. While in our emerging work reported in

Appendix A we have explored the method for better fitting with multiple annotators

without using the single ground truth, it remains an open question about how to enable

the model to achieve the performance of human experts without full annotations

or with a few annotations. This is essential, as providing annotation to a future

large in-the-wild dataset could be extremely cumbersome even if doable. To address

this question, we may proceed from the modeling side with methods like few-short

learning [141] and weakly-supervised learning [148].

7.3.5 The Use of a Large IMUs Network

For most experiments reported in this thesis, a set of 18 IMUs was assumed to be

available to provide data of the full-body graph (22 joints). So many IMUs are not

usually directly taped to the body, and we do not expect this to be the case when

the system is deployed. In fact, ubiquitous motion capture suits that facilitate sensor

wearability, e.g. the MetaMotion IGS-190 [92] (used for the EmoPain dataset) and

Xsens MVN [149], have been around for a long time. Both systems are integrated,

wireless, and consider users’ comfort so that are technically suitable for the sensing
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needed in daily life.

However, such motion capture systems are still expensive even though the

IMU sensors are becoming cheaper, more accurate, and wearable (e.g., invisible,

washable, or transferable between clothes [83]). Although it is out of the scope of

this thesis to develop cheaper suits or examine how to integrate sensors into patients’

clothes, it remains an open area for hardware developers and fashion designers to

propose better solutions. Additionally, the progress in ubiquitous computing (as our

work) may inspire further advances in hardware development, a very active area

where we saw e.g. the integration of multiple sensors in sports garments. Studies

with clinicians and patients show that such advancement is very desirable to help

manage the conditions [44, 45]. Hopefully, our research may further augment the

future wearable devices with capabilities of protective behavior detection and extend

applications to the rehabilitation and clinical contexts.

The original aim of this thesis is, with a large set of sensors, to understand what

is feasible and then explore how to improve it. Thereon, several recent studies have

aimed to combine sparse IMUs or just accelerometers (less than 6 sensors) and visual

information to reconstruct full-body motions in the wild[150, 151]. Given the highest

performance of protective behavior detection is achieved by using full-body graphs

as seen in Chapter 6, we can follow these works to acquire full-body movement data

in less constrained settings using a smaller sensor set.
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classifying human activities with miniature inertial and magnetic sensors.

Pattern Recognition, 43(10):3605–3620, 2010.
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Appendix A

Learning from Multiple Annotators

without Objective Ground Truth

The main study chapters of this thesis demonstrate interesting progresses we have

achieved in the detection of protective behavior in pre-segmented activity instances

or continuous data of various activities, given the ground truth labels produced in a

majority-voting manner.

However, a ground truth produced through majority-voting is not always very

representative. In addition, it comes with information loss for the training of a model,

given the existing multiple annotations of different experts are ignored. Furthermore,

for scenarios where an objective ground truth is missing and the opinions of domain

experts play a key role, learning from the majority-voted ground truth may pose a

bottleneck on model performance when evaluation is conducted on all the annotators.

To address this limitation, one could let the model learn from all annotators.

However, without a proper regularization, the model learning with all the annotations

is vulnerable to the disagreements and imbalances present in the annotations. In this

appendix chapter, we present our emerging study aiming at targeting these issues.

An illustrative diagram summarizing the existing practices to address this

problem and our proposal for learning from multiple annotators is shown in Figure

A.1. Our contributions are summarized as follows.

• We propose a novel agreement learning model to directly leverage the agreement

information stored in the annotations from multiple annotators to regularize the
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Figure A.1: Unlike the methods that learn from the majority-voted ground truth or all the
annotations directly, the proposed model regularizes the classifier that fits with
all the annotators with the estimated agreement information between annotators.

behavior of the classifier that learns from them.

• To improve the robustness of our model, we propose a general agreement distribu-

tion and an agreement regression loss to model the uncertainty in annotations.

• To regularize the classifier, we propose a regularization function to tune the

classifier to better agree with all the annotators.

• Our method noticeably improves existing backbones for better agreement levels

with all the annotators on classification tasks in two medical datasets, involving

data of body movement sequences that we used in previous chapters and bone

X-rays to verify the effectiveness of our method in another domain.

A.1 Motivation
There exist difficulties for model development in applications where the objective

ground truth is difficult to establish or ambiguous merely given the input data itself.

That is, the decision-making, i.e. the detection, classification, and segmentation

process, is based on not only the presented data but also the expertise or experiences

of the annotator. However, the disagreements existed in the annotations hinder the
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definition of a good single ground truth. Therefore, an important part of supervise

learning for such applications is to fit the model to the domain experts’ annotations.

In supervised learning, the input normally comprises pairs of (xi, li), where

xi and li are respectively data and the label of i-th sample. Given the annotations

provided by multiple annotators, typical methods aim to provide a single set of ground

truth label. Therein, a common practice is to aggregate these multiple annotations

with majority voting [152]. However, majority-voting could misrepresent the data

instances where the disagreement between different annotators is high. This is

particularly harmful for applications where differences in expertise or experiences

exist in the annotators.

Except for majority-voting, some have tried to estimate the ground truth la-

bel using STAPLE [153] based on Expectation-Maximization (EM) algorithms.

Nevertheless, such method is sensitive to the variance in the annotations and

the data size [154, 155]. When the number of annotations per xi is modest, ef-

forts are put into creating models that utilize all the annotations with multi-score

learning [156] or soft labels [157]. Recent approaches have instead focused on

leveraging or learning the expertise of the annotators while training the model

[158, 159, 160, 161, 162, 163, 164, 165, 166]. A basic idea is to refine the classifica-

tion or segmentation toward the underlying ground truth by modeling the annotators.

In this appendix chapter, we focus on a hard situation when the ground truth

is ambiguous to define. On one hand, this could be due to the missing of objective

ground truth in a specific scenario. For instance, in the analysis of bodily movement

behavior for chronic pain (CP) rehabilitation, the self-awareness of people with CP

about their exhibited pain or fear-related behaviors is low, thus physiotherapists play

a key role in judging it [27, 25]. However, since the physiotherapists are assessing

the behavior on the basis of visual observations, they may disagree on the judgment

or ground truth.

On the other hand, the ground truth could be temporarily missing, at a special

stage of the task. For example, in abnormality prescreening for bone X-rays, except

for abnormalities like fractures and hardware implantation that are obvious and deter-
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ministic, other types like degenerative diseases and miscellaneous abnormalities are

mainly diagnosed with further medical examinations [167]. That is, at prescreening

stage, the opinion of the doctor makes the decision, which could disagree with other

doctors or the final medical examination though.

Thereon, unlike the traditional modeling goal that usually requires the existence

of a set of ground truth labels to evaluate the performance, the objective of modeling

in this work is to improve the overall fitting between the model and the annotators.

A.2 Related Work
In this section, we review more relevant studies that could provide knowledge and

inspirations for this work. As mentioned above, some recent studies aim to model the

annotation behavior of each labeller to help refine the decision-making of the model

to be as close as to the underlying ground truth. Another set of studies we review

provide some knowledge about uncertainty modeling, as we foresee the possible

existence of a certain level of uncertainty within the diverse annotations. We further

review studies that inform alternative ways for model evaluation without requiring

the use of a single set of ground truth labels.

A.2.1 Annotator Modeling

When dealing with multiple annotators, there is a group of studies that aim to let the

model better approach the underlying ground truth of the data input by modeling

the behavior/expertise/reliability of the annotator. The leveraging or learning of

annotators’ expertise is usually implemented in a two-step or multiphase manner, or

integrated to run simultaneously.

For the first category, one way to acquire the expertise is by referring to the prior

knowledge about the annotation, e.g. the year of experience of each annotator, and

the discussion held on the disagreed annotations. With such prior knowledge, studies

in [158, 159, 160] propose to distill the annotations, by deciding which annotator

to trust on disagreed samples. The expertise, or behavior of an annotator can also

be modeled given the annotation and the data, which could be used to weight each

annotator in the training of a classification model [161], or adopted to refine the
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segmentation learned from multiple annotators [162].

More close to our problem are the ones that simultaneously model the expertise

of annotators while training the classifier. Previous efforts are seen on using prob-

abilistic models [163, 164] driven by EM algorithms, and multi-head models that

directly model annotators as confusion matrices estimated in comparison with the

underlying ground truth [165, 166]. All these methods consider the existence of an

underlying ground truth for each xi, where the annotations are noisy estimations of

it. Furthermore, during the evaluation, such approaches usually compare the model

with the objective ground truth (e.g., the biopsy result in cancer screening) or the

ground truth agreed by extra or left-out annotators. However, when an objective

ground truth does not exist, such evaluations are not possible and there is still the

need to understand how to learn from the subjective annotations.

While the idea behind these works may indeed work for applications where

the distance between each annotator and the underlying ground truth exists and can

be estimated in some ways to refine the decision-making of a model, we argue that

in some cases it is (at least temporarily) difficult to assume the existence of the

underlying ground truth. For instance, in analyzing protective behavior of people

with CP, there isn’t a gold standard protocol in judging it, and experts may indeed

have different opinions sometimes. For another instance, at the prescreening of bone

X-ray abnormality, the instant judgement from the doctor on-duty usually drops the

decision, although a disagreement could arise from the possible discussion with

other doctors (if there are) or the post-hoc medical examination.

Additionally, it could be less reasonable to rank the annotators, since in real-life

practice, each of them is able to carry out the work independently. Thereon, we shift

the focus of the model from approaching the underlying ground truth to fitting with

all the annotators, where each annotator is treated equally.

A.2.2 Uncertainty Modeling

Uncertainty modeling is a popular topic in the computer vision domain, especially for

tasks of semantic segmentation and object detection. Therein, methods proposed can

be categorized into two groups: i) the Bayesian methods, where parameters of the
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posterior distribution (e.g. mean and variance) of the uncertainty are estimated with

Monte Carlo dropout [168, 169, 170] and parametric learning [142, 171] etc.; and

ii) ’non-Bayesian’ alternatives, where the distribution of uncertainty is learned with

ensemble methods [172], variance propagation [173], and knowledge distillation

[174] etc.

Except for their complex and time-consuming training or inference strategies,

another characteristic of these methods is the dependence on Gaussian or Dirac delta

distributions as the prior assumption.

In this work, we consider the uncertainty during our learning of agreement

information per data sample. This uncertainty exists as, at the level of each data

sample (e.g., a timestep during movement or a single bone X-ray image), different

annotators could be inconsistent with their judgements.

Therefore, instead of letting the model learn to estimate the exact level of

agreements between annotators across different samples, we make it understand the

distribution of the agreement. Additionally, we design the distributional agreement

learning without relying on a specific priori, e.g. Gaussian distribution.

A.2.3 Model Evaluation without Ground Truth

In the context of modeling multiple annotations without ground truth, typical mea-

sures for evaluation are the metrics of agreements. For example, [49] uses metrics

of agreement, e.g. Cohen’s Kappa [175] and Fleiss’ Kappa [176], as the way to

compare the agreement level between a system and an annotator and the agreement

level between other unseen annotators, in a cross-validation manner. However, this

method does not consider how to directly learn from all the annotators, and how to

evaluate the performance of the model in this case.

To aid such evaluation when compare a model with all the annotators, [177]

proposes a metric named discrepancy ratio. In short, the metric compares perfor-

mances of the model-annotator vs. the annotator-annotator, where the performance

can be computed as discrepancy e.g. with absolute error, or as agreement e.g. with

Cohen’s kappa.

As we reasoned earlier, the application scenarios targeted in this work face the
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missing of object ground truth not only during training but also in evaluation. Thus,

traditional metrics like accuracy and F measurements are no longer useable. For

PBD, we may be able to consider such an issue during future dataset development,

e.g. by asking annotators to reach an agreement during their annotations, which is

beyond this work.

Additionally, we aim to let the model learn from all the annotators, thus a metric

comparing the model with them should be used during evaluation. Therefore, in

this work, we use the Cohen’s kappa as the agreement calculator together with the

method proposed in [177] to evaluate the performance of the model. We refer to this

metric as agreement ratio.

A.3 Method

An overview of our proposed agreement learning model is shown in Fig.A.2. The core

of our proposed method is to learn to estimate the agreement level between different

annotators based on their raw annotations, and simultaneously utilize the agreement-

level estimation to regularize the training of the classification task. Therein, different

components of the proposed method concern: the learning of agreement levels

between annotators, and regularizing the classifier with such information. In testing

or inference, the model estimates annotators’ agreement level based on the current

data input, which is then used to aid the classification.

In this work, we consider the dataset comprising N samples X = {xi}i=1,...,N ,

with each sample xi being a timestep in a body movement data sequence or an

image. For each sample xi, r j
i denotes the annotation provided by j-th annotator,

with αi ∈ [0,1] being the agreement level computed between annotators. For a binary

task, r j
i ∈ {0,1}. With such dataset D = {xi,r1

i , ...,r
J
i }i=1,...,N , the proposed method

aims to improve the fitting of the model with all the annotators. It should be noted

that, for each sample xi, the method does not expect the annotations to be available

from all the J annotators.
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Figure A.2: An overview of the proposed agreement learning model, which comprises i)
(above) the classifier stream that fits with all the annotators; and ii) (below)
the agreement learning stream that learns to estimate the agreement between
annotators and leverage such information to regularize the classifier.

A.3.1 Learning Agreement with Uncertainty Modeling

To enable a robust learning of the agreement information between annotators, we

consider modeling the uncertainty that could exist in the annotations. In our scenarios,

the uncertainty comes from the annotators’ inconsistent judgement exhibited in their

annotations across different local data samples, which may not follow specific prior

distributions.

Inspired by the study of [178] that proposed to use a general distribution for

uncertainty modeling in the bounding box regression of object classification, without

relying on any prior distributions, we further propose a general agreement distribution

G(yi) for agreement learning (see the upper part of Figure A.3).

The distribution values (i.e., values along the x-axis of the distribution) are

the possible agreement levels yi between annotators with a range of [0,1], which

is further discretized into {y0
i ,y

1
i , ...y

n−1
i ,yn

i } (i.e., to form the x-axis of the distri-

bution). Here need to note that such range of values does not rely on the number

of annotators as y0
i = 0 represents ’not agreed’, and yn

i = 1 represent ’all agreed’.

The general agreement distribution has a property ∑
n
k=0 G(yk

i ) = 1, which thus can

be implemented with a softmax layer with n+ 1 nodes. The number of nodes is

a hyperparameter in our method that should be tuned to balance the granularity

of possible agreement values between the annotators and the number of trainable



A.3. Method 188

Figure A.3: The learning of the agreement between annotators is modeled with a general
agreement distribution using agreement regression loss (above), with the X axis
of the distribution being the agreement levels and the Y axis being the respective
probabilities. The learning can also be implemented as a linear regression task
with RMSE (below).

parameters for training. The predicted agreement ŷi for regression can be computed

as the weighted sum of all the distribution values

ŷi =
n

∑
k=0

G(yk
i )y

k
i . (A.1)

For training the model to predict agreement value ŷi toward the target agreement

αi, inspired by the effectiveness of quantile regression in understanding the property

of conditional distribution [179, 180], we propose a novel Agreement Regression

(AR) loss defined by

LAR(ŷi,αi) = max[αi(ŷi −αi),(αi −1)(ŷi −αi)]. (A.2)

Comparing with the original quantile regression loss, the quantile q is replaced

with the agreement αi computed at current input sample xi. The quantile q is usually

fixed for a dataset, as to understand the underlying distribution of the model’s output

at a given quantile. By replacing q with αi, together with the design of our general

agreement distribution, we optimize the model to focus on the given agreement level

dynamically across samples.
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In [181], the authors proposed to use the top k values of the distribution and their

mean to indicate the shape (flatness) of the distribution, which provides the level of

uncertainty in object classification. In our case, all probabilities of the distribution are

used to regularize the classifier. While this also informs the shape of the distribution

for the perspective of uncertainty modeling, the skewness reflecting the high or low

agreement level learned at the current data sample is also revealed. Thereon, two

fully-connected layers with RELU and Sigmoid activations respectively are used to

process such information and produce the agreement indicator ỹi for regularization.

Learning Agreement with Linear Regression. Straightforwardly, we can also

formulate the agreement learning as a plain linear regression task, modelled by

a fully-connected layer with a Sigmoid activation function (see the lower part of

Fig.A.3). Then, the predicted agreement ŷi is directly taken as the agreement indicator

ỹi for regularization. Given the predicted agreement ŷi and target agreement αi at each

input sample xi, by using Root Mean Squared Error (RMSE), the linear regression

loss is computed as

LRMSE(ŷ,α) = [
1
N

N

∑
i
(ŷi −αi)

2]
1
2 . (A.3)

It should be noted that, the proposed AR loss can also be used for this linear

regression variant, which may help optimize the underlying distribution toward

the given agreement level. In the experiments, an empirical comparison between

different variants for agreement learning is conducted.

A.3.2 Regularizing the Classifier with Agreement Information

Since the high-level information implied by the agreement between annotators could

provide extra hints in classification tasks, we utilize the agreement indicator ỹi to

regularize the classifier training toward providing outcomes that better fitting with

the annotators.

Given a binary classification task (a multi-class task can be decomposed into

several binary ones), at input sample xi, we denote the original predicted probability

toward the positive class of the classifier to be p̂θ (xi). The general idea is that, when

the learned agreement indicator is i) at chance level i.e. ỹi = 0.5, p̂θ (xi) shall stay
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Figure A.4: The property of the regularization function. X and Y axes are the agreement in-
dicator ỹi and regularized probability p̃θ (xi), respectively. p̃θ (xi) is regularized
to the class, for which the ỹi is high, with the scale controlled by λ .

unchanged; ii) biased toward the positive or negative class, the value of p̂θ (xi) shall

be regularized to be higher or lower accordingly. For these targets, we propose a

novel regularization function written as

p̃θ (xi) =
p̂θ (xi)eλ (ỹi−0.5)

p̂θ (xi)eλ (ỹi−0.5)+(1− p̂θ (xi))eλ (0.5−ỹi)
, (A.4)

where p̃θ (xi) is the regularized probability toward the positive class of the binary task,

λ is a hyperparameter controlling the speed at which the raw predicted probability

p̂θ (xi) changes toward p̃θ (xi) when the agreement indicator increases or decreases.

Fig.A.4 shows the property of the function: for the original predicted probability

p̂θ (xi) = 0.5, the function with larger λ augments the effect of the learned agreement

indicator ỹi so that the output p̃θ (xi) is regularized toward the more (dis)agreed;

when ỹi is at 0.5, where annotators are unable to reach an above-chance opinion

about the task, the regularized probability stays unchanged with p̃θ (xi) = p̂θ (xi).
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A.3.3 Alleviating Imbalances when Using Logarithmic Loss

In this subsection, by refining the traditional cross-entropy loss, we first alleviate

the influence of class imbalances present in the annotation of each annotator on the

classifier stream that learns from multiple annotators. We further look into the use

of another loss function that directly designed for the objective of reaching better

agreement levels with annotators. By using this loss function, we may also avoid the

class-imbalance problem during training.

Annotation Balancing for Each Annotator. For the classifier stream, given the

regularized probability p̃θ (xi) at the current input sample xi, the classifier is updated

using the sum of the loss computed according to the available annotation r j
i from

each annotator.

Due to the various the nature of the task (i.e., positive samples are sparse), the

annotation from each annotator could be noticeably imbalanced. To address this

problem, we use the Focal Loss (FL) [129], written as

LFL(p,g) =−|g− p|γ(g log(p)+(1−g) log(1− p)), (A.5)

where p is the predicted probability of the model toward the positive class at the

current data sample, g ∈ {0,1} is the binary ground truth, and γ ≥ 0 is the focusing

parameter used to control the threshold for judging the well-classified. A larger γ

leads to a lower threshold so that more samples would be treated as the well-classified

and down weighted. In our scenario, the FL function is integrated into the following

loss function to compute the loss for each annotator

Lθ , j(P̃θ ,R j) =
1

Ǹ j

Ǹ j

∑
i=1

LFL(p̃θ (xi),r
j
i ), (A.6)

where Ǹ j ≤ N is the number of samples that have been labelled by j-th annotator,

P̃θ = {p̃θ (xi)}i=1,...,N , R j = {r j
i }i=1,...,N and r j

i = null if this annotator did not

annotate at i−th sample and the loss is not computed here. By default, the losses
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computed from all the annotators are averaged to be the final loss of the classifier

L̄θ (P̃θ ,R) =
1
J

J

∑
j=1

Lθ , j(P̃θ ,R j). (A.7)

Additionally, searching for the γ manually for each annotator could be cumber-

some, especially for a dataset labeled by numerous annotators. In this work, in order

to save such efforts, we compute γ for each annotator given the number of samples

per class of each binary task. The hypothesis is that, for annotations biased more

toward one class, γ shall set to be bigger since larger number of samples tend to be

well-classified. Following [127], we leverage the effective number of samples to

compute each γ j as

γ j =
(1−β

n j
k)

(1−β
(Ǹ j−n j

k))
, (A.8)

where n j
k is the number of samples for the majority class k in the current binary task

annotated by annotator j, β = Ǹ j−1
Ǹ j .

Leaning with an Agreement-oriented Loss. In [182], a Weighted Kappa Loss

(WKL) was used to compute the agreement-oriented loss between the output of a

model and the annotation of an annotator. As developed from the weighted Cohen’s

Kappa [183], this loss may guide the model to pay attention to the overall agreement

instead of the local accuracy. Thus, we may be able to avoid the cumbersome work

of alleviating the class imbalances. The loss function can be written as

LWKL = log(1−κ). (A.9)

The linear weighted kappa is used as κ in this equation, where the penalization

weight is proportional to the distance between the predicted and the class. We

replace the FL loss written in Equation A.5, to compute the weighted kappa loss

across samples and annotators using Equation A.6 and Equation A.7. Since the value

range of Equation A.9 is (−∞, log2], a Sigmoid function is applied before we sum

the loss from each annotator. We compare this loss function to the logarithmic one.
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A.4 Experiment Setup
This section describes the datasets we use for evaluation, the implementation details,

method for agreement computation, and the metric.

A.4.1 Datasets

Two medical datasets are selected to evaluate the proposed model, involving data of

body movement sequences and bone X-rays.

EmoPain. As described in Chapter 3, four experts were recruited to provide the

binary annotations of the presence or absence of protective behavior per timestep

for each CP participant data sequence. In comparison with the studies presented in

previous chapters that adopted majority-voting for ground truth definition, here we

use the annotations of all the four annotators in our modeling.

MURA. The MURA dataset [167] comprises 40,561 radiographic images of 7 upper

extremity types (i.e., shoulder, humerus, elbow, forearm, wrist, hand, and finger), and

is used for the binary classification of abnormality. This dataset is officially split into

training (36,808 images), validation (3197 images), and testing (556 images) sets,

with no overlap in subjects. The training and validation sets are publicly available,

with each image labelled by a radiologist.

While some abnormalities like fractures and hardware implantation are determin-

istic, the others like degenerative diseases and miscellaneous abnormalities are

mostly determined given further examination. Thus, at the prescreening stage, such

abnormality classification relies on the expertise of the expert.

For the testing set, the authors of the dataset recognized possible disagreements

from other experts during such prescreening process and recruited six additional

radiologists for annotation, and defined the ground truth with majority-voting among

each three randomly-picked radiologists for each sample. In average, the left-out

three radiologists achieved Cohen’s kappa with such ground truth of 0.731, 0.763,

and 0.778, respectively.

To simulate the opinions of different experts for data we have access to, three virtual
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annotators are purposely created to reach overall Cohen’s kappa with the existing

annotator of 0.80, 0.75, and 0.70, respectively. Here need to note that, such a process

of creating the virtual annotators, by randomly changing the existing annotation,

only cares about the overall Cohen’s kappa of each simulated annotator with the

existing real annotator, and we do not control the variance of annotations per sample.

A.4.2 Implementation Details

For experiments on the EmoPain dataset, the state-of-the-art HAR-PBD network

presented in Chapter 6 is adopted as the backbone, and Leave-One-Subject-Out

validation is conducted across the 18 participants with CP. The average of the

performances achieved on all the folds is reported. The training data is augmented

by adding Gaussian noise and cropping, as seen in Chapter 4, Chapter 5, and Chapter

6. The number of bins used in the general agreement distribution is set to 10, i.e.,

the respective softmax layer for agreement learning has 11 nodes. The λ used in the

regularization function is set to 3.0.

For experiments on the MURA dataset, the Dense-169 network [184] pretrained

on the ImageNet dataset [185] is used as the backbone. The original validation set

is used as the testing set, where the first view (image) from each of the 7 upper

extremity types of a subject is used. Images are all resized to be 224×224, while

images in the training set are further augmented with random lateral inversions and

rotations of up to 30 degrees. The number of bins is set to 5, and the λ is set to 3.0.

For all the experiments, the classifier stream is implemented with a fully-

connected layer using a Softmax activation with two output nodes for the binary

classification task. Adam [102] is used as the optimizer with an initial learning

rate set to lr =1e-4, which is reduced by multiplying 0.1 if the performance is not

improving after 10 epochs. The number of maximum epochs is set to 50.

For the classifier stream, the logarithmic loss is adopted by default as used

in Equation A.5, A.6, A.7, and A.9, while the WKL loss is used for comparison

when mentioned. For the agreement learning stream, the AR loss is used for the

distributional variant, while the RMSE is used for the linear regression variant. We

implement our method with TensorFlow deep learning library on a PC with a RTX
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3080 GPU and 32 GB memory.

A.4.3 Agreement Computation

For a binary task, the agreement level αi between annotators is computed as

αi =
1
J̀

J̀

∑
j=1

w j
i r j

i , (A.10)

where J̀ is the number of annotators that have labelled the i−th sample xi. In this

way, αi ∈ [0,1] stands for the agreement of annotators toward the positive class of

the current binary task. In this work, we assume each sample was labelled by at least

one annotator. w j
i is the weight for the annotation provided by j-th annotator that

could be used to show the different levels of expertise of the annotators. The weight

can be set manually given prior knowledge about the annotator, or used as a learnable

parameter for the model to estimate. In this work, we treat annotators equally by

setting w j
i to 1. We leave the discussion on other situations to future works.

A.4.4 Metric

Following [177], we evaluate the performance of a model by using the agreement

ratio defined as

∆ =
C2

J
J

∑
J
j=1 Sigmoid(κ(P̃θ ,R j))

∑
J
j, j′=1& j ̸= j′

Sigmoid(κ(R j,R j′ ))
, (A.11)

where the numerator computes the average agreement for the pairs of predictions

of the model and annotations of each annotator, and the denominator computes the

average agreement between annotators with C2
J denoting the number of different

annotator pairs. κ is the Cohen’s Kappa. The agreement ratio ∆ > 0 is larger than 1

when the model achieves better performance than the average annotator.

A.5 Results
In this section, we present and discuss the results in the evaluation of our proposed

method on the EmoPain dataset that we use across this thesis and another medical

dataset. We first demonstrate the improvements introduced by our method. Then, we
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study the impact of the proposed AR loss.

A.5.1 Logarithmic Loss with Balancing Methods vs. WKL Loss

As shown in the first section of Table A.1, models trained with majority-voted

ground truth produce agreement ratios of 1.0417 and 0.7616 with logarithmic loss

and annotation balancing (in this case is class balancing for the single majority-voted

ground truth) on the EmoPain and MURA datasets, respectively.

As shown in the second section of Table A.1, directly exposing the model

to all the annotations is harmful, with performances lower than the models with

majority-voting of 0.9733 and 0.7564 achieved with logarithmic loss used alone on

the two datasets, respectively. By using the balancing method during training, the

performance on the EmoPain dataset is improved to 1.0189 but is still lower than

what can be achieved using majority-voted ground truth, while a better performance

of 0.7665 on the MURA dataset is achieved. These results show the importance of

balancing for the modeling with learn-from-all paradigm.

The performances of the model with majority-voted ground truth (1.0452/0.7638)

Table A.1: The ablation experiment on the EmoPain and MURA datasets. Majority-voting
refers to the method using the majority-voted ground truth for training. CE and
WKL refer to the logarithmic and weighted kappa loss functions used in the
classifier stream, respectively. Linear and Distributional refer to the agreement
learning stream with linear regression and general agreement distribution, re-
spectively. The best performance in each model/annotator set is marked in bold
for each dataset.

Model/Annotator CE WKL
Annotation

Balance Linear Distributional
EmoPain

∆ ↑
MURA

∆ ↑

Majority-voting
√ √

1.0417 0.7616√
1.0452 0.7638

Learn-from-all

√
0.9733 0.7564√ √
1.0189 0.7665√
1.0407 0.7715

Agreement Learning
(Ours)

√ √ √
1.0477 0.7727√ √ √
1.0508 0.7796√ √
1.0471 0.7768√ √
1.0547 0.7801

Annotator 1 0.9613 1.0679
Annotator 2 1.0231 0.9984
Annotator 3 1.0447 0.9743
Annotator 4 0.9732 0.9627
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and learn-from-all paradigm (1.0407/0.7667) are further improved by using the

WKL loss on the two datasets, respectively. This proves the advantage of using the

WKL loss for improving the fitting with multiple annotators, which is designed to

optimize a model at the global agreement level with each annotator rather than the

local accuracy.

A.5.2 The Impact of Agreement Learning

For both datasets, as shown in the third section of Table A.1, with our proposed

agreement learning method using general agreement distribution, the best overall

performances of 1.0547 (with WKL loss) and 0.7796 (with logarithmic loss) are

achieved on the two datasets, respectively.

For agreement learning, the combination of general agreement distribution and

AR loss shows better performance than its variant using linear regression and RMSE

on both datasets (1.0477 with logarithmic loss and 0.7768 with WKL loss). Such

results could be due to the fact that the agreement indicator produced from the linear

regression is directly the estimated agreement value, which could be largely affected

by the errors made during agreement learning. In contrast, with general agreement

distribution, the information passed to the classifier is first the shape and skewness of

the distribution. Thus, it is more tolerant to the errors (if) made by the weighted sum

that used for the actual regression in the agreement learning. This advantage can

also be taken as a way to capture the uncertainty that may exist in the annotations.

A.5.3 Comparing with the Annotators

In the last section of Table A.1, the annotation of each annotator is used to compute

the agreement ratio against the other annotators.

For the EmoPain dataset, the best method in majority-voting (1.0452) and learn-

from-all (1.0407) paradigms show very competitive if not better performances than

annotator 3 (1.0447) who has the best agreement level with all the other annotators.

Thereon, the proposed agreement learning method is able to improve the perfor-

mance to an even higher agreement ratio of 1.0547 against all the annotators. This

performance suggests that, when adopted in real-life, the model is able to analyze the
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protective behavior of people with CP, at a performance that is highly in agreement

with the human experts. These results once again show that the HAR-PBD backbone,

which was proposed in our last study presented in Chapter 6, is able to provide

promising results even when the learning scenario becomes more challenging.

However, for the MURA dataset, the best performance so far achieved by the

agreement learning model of 0.7801 is still lower than annotator 1. This suggests

that, at the current task setting, the model may make around 22% errors more than

the average human expert. One reason could be largely due to the challenge of

the task. As shown in [167], where the same backbone only achieved a similar if

not better performance than the other radiologists for only one (wrist) out of the

seven upper extremity types. In this work, the testing set comprises all the extremity

types, which makes the experiment even more challenging. In the future, one may

explore using better backbones other than the vanilla Dense network to improve such

performance.

A.5.4 The Impact of Agreement Regression Loss

The proposed AR loss can be used for both the distributional and linear agreement

learning. However, as seen in Table A.2 and Table A.3, the performance of linear

agreement learning is better with RMSE rather than with the AR loss. The design

of the AR loss assumes the loss computed for a given quantile is in accord with its

counterpart of agreement level. Thus, such results may be due to the gap between

the quantile of the underlying distribution of the linear regression and the targeted

agreement level. Therefore, the resulting estimated agreement indicator using AR

loss passed to the classifier may not reflect the actual agreement level. Instead, for

linear regression, a vanilla loss like RMSE promises that the regression value is

fitting toward the actual agreement level.

By contrast, the proposed general agreement distribution directly adopts the

range of agreement levels to be the distribution values, which helps to narrow the

gap when AR loss is used. Therein, the agreement indicator is extracted from the

shape and skewness of such distribution (probabilities of all distribution values),

which could better reflect the agreement level when updated with AR loss. As shown,
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Table A.2: The experiment on the EmoPain dataset for analyzing the impact of Agreement
Regression (AR) loss on agreement learning. The best performance in each
agreement learning type is marked in bold.

Loss for
Classifier

Agreement Learning
Type

Agreement Learning
Loss ∆ ↑

CE
Linear

RMSE 1.0477
AR 0.9976

Distributional
RMSE 1.0289

AR 1.0508

WKL
Linear

RMSE 1.0471
AR 1.035

Distributional
RMSE 1.0454

AR 1.0547

Table A.3: The experiment on the MURA dataset for analyzing the impact of Agreement
Regression (AR) loss on agreement learning. The best performance in each
agreement learning type is marked in bold.

Loss for
Classifier

Agreement Learning
Type

Agreement Learning
Loss ∆ ↑

CE
Linear

RMSE 0.7727
AR 0.7698

Distributional
RMSE 0.7729

AR 0.7796

WKL
Linear

RMSE 0.7768
AR 0.7674

Distributional
RMSE 0.7684

AR 0.7801

the combination of distributional agreement learning and AR loss achieves the best

performance in each dataset.

A.6 Summary
In this appendix chapter, we targeted the scenario of learning with multiple annotators

where the ground truth is ambiguous to define during training as well testing. Unlike

previous studies dealing with multiple annotators that aimed to model the underlying

ground truth [161, 163, 164, 165, 166, 162], for this targeted learning scenario, we

shift the focus of modeling to better fitting with all the annotators.

Aside from the EmoPain dataset that we used across this thesis, another medical

comprising bone X-rays that also falls into this scenario was also adopted for the

evaluation. We showed that backbones developed with majority-voted ground truth

or multiple annotations can be easily improved to achieve better agreement levels
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with the annotators, by leveraging the underlying agreement information stored in

the annotations. Our experiments also showed that, when the objective is to better fit

with annotators, the agreement-oriented loss (i.e., the weighted kappa loss) is better

than logarithmic loss (i.e., the cross-entropy loss) during training.

For agreement learning, our experiments demonstrate the advantage of learning

with the proposed general agreement distribution and agreement regression loss,

in comparison with other possible variants. Future works may extend this work to

prove its efficiency in datasets having multiple classes, as only binary tasks were

considered in this work. Additionally, the learning of annotator’s expertise seen

in [165, 166, 162] could be leveraged to weight the agreement computation and

learning proposed in our method for cases where annotators are treated differently.

This work was done in a visit to Shenzhen Institute of Artificial Intelligence

and Robotics for Society (AIRS) in 2021, with a paper in preparation and its preprint

available at [186].
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