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Protective behavior exhibited by people with chronic pain (CP) during physical activities is very informative to understanding
their physical and emotional states. Existing automatic protective behavior detection (PBD) methods rely on pre-segmentation
of activities predefined by users. However, in real life, people perform activities casually. Therefore, where those activities
present difficulties for people with CP, technology-enabled support should be delivered continuously and automatically
adapted to activity type and occurrence of protective behavior. Hence, to facilitate ubiquitous CP management, it becomes
critical to enable accurate PBD over continuous data. In this paper, we propose to integrate human activity recognition
(HAR) with PBD via a novel hierarchical HAR-PBD architecture comprising graph-convolution and long short-term memory
(GC-LSTM) networks, and alleviate class imbalances using a class-balanced focal categorical cross-entropy (CFCC) loss.
Through in-depth evaluation of the approach using a CP patients’ dataset, we show that the leveraging of HAR, GC-LSTM
networks, and CFCC loss leads to clear increase in PBD performance against the baseline (macro F1 score of 0.81 vs. 0.66
and precision-recall area-under-the-curve (PR-AUC) of 0.60 vs. 0.44). We conclude by discussing possible use cases of the
hierarchical architecture in CP management and beyond. We also discuss current limitations and ways forward.
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1 INTRODUCTION
Chronic pain (CP) is a prevalent condition in 30.7% of adults in the US [15]. People with chronic musculoskeletal
pain (a common type of CP) exhibit protective behavior (guarding, stiffness, hesitation, the use of support, and
jerky motion) during physical activity [30], providing important information about their physical state, anxiety
about movement, and ability to manage their condition [5, 70]. In clinical settings, physiotherapists observe
protective behavior and respond with feedback, movement suggestions, and therapeutic interventions [61]. This
tailored support is important to incrementally build patients’ self-efficacy and maintain their engagement in
physical activity [47]. However, such support is expensive and only available to few people with CP. In addition,
behavior in the clinic is a narrow sample of the physical and psychological capabilities required for everyday
physical functioning [8]. Maintaining self-management is hard and people often disengage, thereby losing valued
activities including social involvement [70]. To prevent disengagement, observation and personalized support
need to extend beyond the clinical context [48].
Ubiquitous sensing and computing technology offer new opportunities to provide such support to people

with CP. Patients describe technology capable of protective behavior detection (PBD) as a ‘second pair of eyes’,
increasing their awareness and helping application of pain management strategies learned in the clinic [16].
In [62], patients and physiotherapists discussed how such technology could help patients to better control
activity pacing and breathing when protective behavior is detected. The technology may also, e.g., replicate
physiotherapists’ advice on chair height if the patient has difficulties sitting down or standing up. These studies
also show that awareness of habitual protective behavior can help reduce it (e.g. reminding the person to bend
the trunk as they stand up from a chair). In addition to providing personalized feedback, such technology can be
adopted to evaluate the effect of clinical interventions [65].
The first step in building a ubiquitous technology to help people with CP in their everyday lives is to enable

continuous PBD during diverse functional activities. To date, the focus has been on PBD in specific exercises
where the activity being performed is known in advance. Interesting PBD results are only achieved within
pre-segmented activity instances [73–75]. However, pre-segmentation is not feasible for everyday (functional)
activities. In this paper, we aim to address these problems by approaching continuous PBD with continuous
recognition of the activity (HAR) in process. We propose a novel hierarchical HAR-PBD architecture, where the
activity type when recognized is continuously leveraged to build activity-informed input for concurrent PBD.
To investigate the efficacy of our approach, we use the fully-annotated EmoPain dataset [6]. The dataset

comprises full-body movement data captured from CP and healthy participants during sequences of move-
ments reflecting everyday activities. We refer to these as activities-of-interest (AoIs) since they were chosen
by physiotherapists as particularly demanding for people with CP and likely to trigger protective behavior.
While this dataset was not collected in the wild, participants performed each activity without how-to instruction,
and transitions between AoIs further created noise typical of in-the-wild data collection. During transition
periods, participants could rest according to their needs or enjoy casual movements such as stretching, walking,
and self-preparation. An illustration of a complete activity sequence of one CP participant with the protective
behavior annotation is shown in Fig 1. Evaluation shows that the activity information noticeably improves the
PBD performance in such continuous data, achieving macro F1 score of 0.73 and PR-AUC of 0.52 in comparison
with the baseline method without such information (macro F1 score of 0.66 and PR-AUC of 0.44). By alleviating
class imbalances with a class-balanced focal categorical cross-entropy (CFCC) loss [9, 38], PBD performance is
further improved, achieving macro F1 score of 0.81 and PR-AUC of 0.60. Our contributions are four-fold:

• For the first time, continuous detection of protective behavior is studied using full data sequences of CP
patients. Previously, continuous PBD was only established on pre-segmented activity instances.
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Fig. 1. An example of the full data sequence from a CP participant, comprising AoIs and transitions. Lines are red, green,
and blue for the x, y, and z coordinates data, respectively. Protective behavior labels (majority-voted) are shown below the
sequence.

• A novel hierarchical HAR-PBD architecture is designed to leverage activity recognition to enable detection
of protective behavior (i.e., movement behavior driven by emotional variables) in continuous data sequences.
Protective behavior was investigated in the past without leveraging its activity background.

• Graph convolution (GC) [32] and long short-term memory (LSTM) [23] layers are combined to model the
body-worn inertial measurement units (IMUs) data for PBD, while in the past only convolutional neural
networks (CNNs) [35] and LSTMs were applied. Although the concept of combining GC and LSTM exists
in computer vision-based studies, it is adopted for the first time to show advantage of graph representation
in the context of emotional behavior across activities. A loss function referred to as CFCC loss is also
employed to alleviate class imbalances of continuous data.

• Comprehensive experiments and analyses using data collected from both CP and healthy participants.
Various training strategies of the proposed hierarchical architecture are explored, and an analysis of
simulating fewer IMUs demonstrates the applicability and efficacy of our method on smaller sensor sets.

2 BACKGROUND, MOTIVATIONS AND RELATED WORKS
Our proposed hierarchical HAR-PBD architecture comprises two main modules: one for activity recognition
and another for PBD. Here we summarize the literature related to pain-, fear-, and anxiety-induced movement
behavior detection and HAR, while reveal the motivations of this work.

2.1 Affective Movement Behavior Detection
Pain, fear, and anxiety are expressed not only by the face, but also by altered body movements [10, 64]. The
automatic detection of affective bodily expressions is a growing area of research in the affective computing
community [4, 27]. While bodily expressions of emotion were previously studied in isolation, the focus is now on
real-life data. Due to the technical challenges, most studies still use static situations (e.g. during a consultation
interview with a therapist [25]) or the type of activity is constant throughout (e.g. the detection of pain and
anxiety in game-based physical rehabilitation [53, 71]). Bodily expression is also used to inform healthcare
applications, e.g. for detection of depression [25], oral hygiene [3], and perinatal assessment for stroke [18].
Typically, these scenarios only require the tracking of few body parts without fine-grained analysis of full-body
movement.

Automatic detection of continuous affective behavior across different daily activities is still rare. For example,
[46] explored the detection of bodily expressions of reflective thinking in the context of diverse full-body
mathematical games. While this study developed activity-independent models over continuous data sequences,
their proposed LSTM-based architecture needs to be trained on pre-segmented affective events (e.g. when the
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child expresses the states of interest vs. other states). Recently, studies very relevant to ours have attempted to
detect protective behavior across different activities. On the EmoPain dataset [6], researchers have shown that the
use of LSTM-based architectures facilitates activity-independent PBD with improved performances. Interesting
results are seen in [74] and [75], where the stacked-LSTM network and body attention network (BANet) were
proposed to conduct traversal and local processing of body movement data, respectively. Although the model is
activity-independent and functions across different activity types, continuous detection was constrained only
within pre-segmented AoIs. The relationship between the type of activity and protective behavior is not leveraged
in the modeling. The attention mechanism used in BANet only focuses on identifying the most relevant body
segments but does not directly leverage such relationship.
As such, how to enable continuous PBD along a sequence of activities remains an open challenge. The high

variability of protective behavior exhibited within the same activity type across people [75] also calls for a better
approach to extract generalized information from the full-body movement data.

2.2 Human Activity Recognition
The modeling of body movement has gone through extensive development in the context of HAR. The majority
of HAR research focuses on classifying the type of activity a person is engaged in by using data from wearable
sensors [1, 12, 20, 22, 41, 44, 51, 80] or skeleton data from visual motion-capture (MoCap) systems [59, 77]. The
preference for wearable sensors vs. visual systems rests on the limits to mobility imposed by the application.

HAR with vision- and sensor-based data has evolved quickly in the past few years, especially for the perspective
of data processing strategies. Initially, data was processed in a traversal manner, where acceleration, orientation,
or joint coordinates were treated as temporal multi-dimensional sequences. As a result, efforts were dedicated
to feature engineering [17, 76] and basic neural networks [20, 22, 41] e.g. LSTM networks [23], to address the
temporal aspects of body movement data. Later, various studies started to exploit the spatial configuration
of the sensor/joint network. For instance, several data representations considered the relationships between
sensors/joints [29, 36, 81], with network architectures designed to enable local processing of movement dynamics
[13, 19, 39, 40, 44, 75, 80]. Performance improvements achieved by these methods suggest that body configuration
information is important for activity recognition. More recently, the re-introduction of graph convolution network
(GCN) [14, 45] offers a newmethod for HAR. One reason for the successful use of GCN on skeleton-like movement
data [7, 37, 57–59, 77, 78] is that the human body can be naturally presented as a non-directed graph. Graph
representation helps a model learn the biomechanical relationships between body segments without imposing
knowledge about specific activities of interest. Noticeable improvements are seen on several benchmark datasets
(e.g. NUS RGB+ [56] and Kinetics [28]), achieved by using GCNs.

Whilst the concept of body configuration is very much leveraged in vision-based HAR systems, enabled by the
full-body MoCap therein, it is not the case for ubiquitous sensor-based HAR or movement behavior detection.
The sensor-based HAR literature has focused on using a small set of sensors to classify activity, with each study
examining specific activities [51] or benchmark datasets [52, 54, 63]. Using a small network of sensors also
increases applicability and reduces cost in real-life deployment. However, as in the case of CP rehabilitation,
critical information may not be in the movement of the main body segments involved, but in other body parts
recruited to protect the body [5, 30, 47, 70]. For example, Olugbade et al. [48] show the importance of head
stiffness to indicate protective behavior during sit-to-stand-to-sit and reach-forward, although head movement is
not needed to perform such activities. Psychology studies in CP point to the importance of assessing activity
quantity as well as movement quality. As a result, using full-body movement data (as in the EmoPain dataset)
rather than a small set of sensors, to detect protective behavior across activities, is based on three arguments:
i) full-body movement data is needed to capture detailed movement behavior of multiple body parts for PBD
across activities; ii) patients and clinicians see benefits and opportunities that such sensing technology offers, and
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are open to using it [65]; iii) full-body sensing is becoming more convenient as wearable sensors are becoming
smaller and integrated into clothes [26]. Moreover, we evaluate the efficacy of our method on small sensor sets at
the end of this paper.
The advantage of using GCN in skeleton-based HAR, the need to model a large set of sensors, and high

variability in body configuration information in PBD all suggest the importance of exploring the use of GCN
in the context of protective behavior. It also brings together research work on HAR and PBD (or in general
emotional movement behavior detection) that have surprisingly evolved separately, despite clearly representing
activity and emotional bodily expressions that co-occur in real life with each altering the other. To the best of our
knowledge, only one paper has investigated the use of GCN in bodily affective expressions [7], but considers just
one task (gait) and acted emotional expressions, a much simpler (stereotypical) problem to address. As such, they
explored GCN alone and do not need to address the variety of activity and class imbalances of continuous data.
In this paper, we aim to use the proposed hierarchical architecture to answer the questions: is HAR beneficial
to PBD in continuous data and how could these two modules be connected? For each module of our proposed
architecture, GC is employed to model the movement data captured by multiple IMUs per timestep. Given the
success of LSTM in capturing temporal patterns of protective behavior [74, 75], LSTM layers are used to model
the temporal dynamics.

3 THE HIERARCHICAL HAR-PBD ARCHITECTURE AND CFCC LOSS
A novel hierarchical architecture combining HAR and PBD modeling is proposed to enable PBD over continuous
data sequences of activities. An overview of this architecture is presented in Fig 2. Both HAR and PBD modules
receive consecutive frames as the input. These are extracted with a sliding-window from the data sequence
collected with 18 IMUs. For HAR module the activity type label is used for training, whereas for PBD the
protective behavior label (absence and presence) is used. In addition, the first module (HAR) aims to recognize
the type of activity being performed and pass such information to the second module (PBD) that recognizes
the presence or absence of protective behavior. For our main experiments, the HAR module is pre-trained with
activity labels on the same folds of data during each round of leave-one-subject-out validation (LOSO) used for
PBD. The weight achieving the highest activity recognition accuracy is saved. The HAR module is frozen with

Fig. 2. The proposed hierarchical HAR-PBD architecture, comprising the human activity recognition (HAR) module and
protective behavior detection (PBD) module. By default, using the same data input, the HAR module is pre-trained with
activity labels and frozen during training of the PBD module with behavior labels.
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such pre-trained weight loaded when used in the hierarchical architecture. Therein, the activity classification
output is concatenated with the same original input frame and passed to train and test the PBD module using
labels of protective behavior. We use this frozen (optimized) HAR module to better understand the benefit of
using the proposed hierarchical HAR-PBD architecture. Further analyses using a non-frozen HAR module are
reported at the end of the paper. To the best of our knowledge, this is the first implementation to leverage HAR
to enable another concurrent task on the same data.
Both modules in our proposed architecture use a similar network comprising GC and LSTM layers. The GC

layer is used to model the body configuration information collected from 18 IMUs. Following its success in recent
vision-based HAR literature, we aim to explore the contribution of GC in PBD given the large variety in protective
behavior exhibited by people with CP when performing each AoI. Meanwhile, LSTM is used to learn the temporal
dynamics across graphs corresponding to the body movement across different timesteps, critical for both HAR
and PBD (e.g. hesitation slows down movements, and fear of pain or perceived pain lead to difference in timing
of body-part engagement for the same activity).

3.1 The GC-LSTM Network for HAR and PBD Modules
There is a variety of implementations of using GC for skeleton-based movement data. Some have altered the GC
itself to facilitate a spatial-temporal operation [7, 37, 57, 77]. Others connect the GCN and LSTM via extra layers
[59] or integrate GC within the gates of each LSTM unit [58] to enable a recurrent computation across time. The
performance of these approaches fluctuates on vision-based HAR benchmarks [28, 56], and they have never been
applied in the context of emotional bodily behavior across different activities. For both HAR and PBD modules
in our proposed architecture, a network integrating GC and LSTM is used, referred to as HAR/PBD GC-LSTM.
There are three considerations for the design of HAR/PBD GC-LSTM:

• The limited size of the EmoPain dataset in comparison with popular vision-based HAR benchmarks [28, 56]
that have been used to evaluate GCNs, making it difficult to adopt more complex existing implementations.

• The need to verify if the graph representation is indeed capable of improving PBD, which requires using
GCN as a way to learn data representations and removing unnecessary designs, e.g. embedding GCN into
LSTM.

• The aim to connect the HAR module with the PBD module, which requires the GC-LSTM network to
tolerate the fusion of activity information and movement data at input level.

In this paper, we focus on a conceptually simple implementation that builds parallel connection between GC
and LSTM layers as the basic component in our architecture. Such design is helpful to verify the advantage of
using a graph representation to model data from multiple IMUs in the context of HAR and PBD. Explorations of
GC-LSTM variants may further improve performances, but are out of the scope of this paper. We leave these to
future work.

3.1.1 Graph Input. A wearable motion capture suit named MetaMotion IGS-190 [42] comprising 18 IMUs was
used for the data collection. As provided in the EmoPain dataset [6], at each timestep, 3D coordinates of 22 body
joints were calculated from the raw data stored in a Biovision Hierarchy (BVH) format. Within the BVH file, the
metadata includes the skeleton proportion of the participant (e.g. the length of limbs) and position on the body
that each sensor was attached to (Fig 3(a)). Using a Matlab MoCap toolbox [34], the approximate position of
22 body joints in the 3D space was estimated based on the metadata, the gyroscope, and accelerometer data. It
is important to note that such transformation brings no prior knowledge of specific activities. It only reflects
the definite position of each body joint in the 3D space. An illustration of such transformation from IMUs to
positional triplets of body joints is shown in Fig 3(b).
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Fig. 3. Illustrations of a) the placement of 18 IMUs, b) the calculation of 22 sets of 3D joint coordinates, and c) the built
graph input at a single timestep, where each node represents a human body joint. The blue contour marks the neighbor set
(receptive field) of the centered node in green.

3.1.2 Graph Notation. A body-like graph is built to arrange each of the 22 joints to be a node connected
naturally in the graph to the other joints, as shown in Fig 3(c). We denote the graph as G = (𝑉 , 𝐸), with a
node set 𝑉 {𝑡, 𝑖} = {𝜐𝑡𝑖 | 𝑡 = 1, ...,𝑇 ; 𝑖 = 1, ..., 𝑁 } representing the 𝑁 nodes of a graph at timestep 𝑡 within a
graph sequence of length 𝑇 , and an edge set 𝐸 representing the edges connecting the nodes in this graph.
Since in this work independent LSTM layers are used to learn the temporal dynamics across graphs at different
timesteps, the inter-skeleton edge (usually represents the temporal dynamics) connecting consecutive graphs is
not leveraged. Therefore, only the intra-skeleton edge (representing the connection of body joints) is considered
with 𝐸 {𝑖, 𝑗} =

{(
𝜐𝑡𝑖 , 𝜐𝑡 𝑗

)
| (𝑖, 𝑗) ∈ 𝐵

}
, where 𝐵 is the set of naturally connected nodes (joints) of the human body

graph. An adjacency matrix A ∈ {0, 1}𝑁×𝑁 is used to identify the edge 𝐸 between nodes, where 𝐴𝑖, 𝑗 = 1 for the
connected 𝑖-th and 𝑗-th nodes, and 0 for disconnected ones. A stays the same for all the tasks in this work. In
other words, the basic configuration of a graph is independent of time and participants, while the relationship
between different body parts in different activities is learned during training. The identity matrix is I𝑁 ∈ {1}𝑁×𝑁 ,
a diagonal matrix that represents the self-connection of each node in the graph. With the adjacency matrix A and
identity matrix I𝑁 , the body configuration is represented by matrices and can be processed by neural networks.
The feature of each node in a graph at timestep 𝑡 is stored in a feature matrix XG

𝑡 ∈ R𝑁×3. The raw feature of each
node is the coordinates of the respective body joint, denoted as XG

𝜐𝑡𝑖 = [𝑥𝑡𝑖 , 𝑦𝑡𝑖 , 𝑧𝑡𝑖 ]. The neighbor set of a node
𝜐𝑡𝑖 is denoted as N(𝜐𝑡𝑖 ) =

{
𝜐𝑡 𝑗 | 𝑑 (𝜐𝑡𝑖 , 𝜐𝑡 𝑗 ) ≤ 𝐷

}
, with distance function 𝑑 (𝜐𝑡𝑖 , 𝜐𝑡 𝑗 ) accounting for the number of

edges in the shortest path traveling from 𝜐𝑡𝑖 to 𝜐𝑡 𝑗 and threshold 𝐷 defining the size of the neighbor set. Following
previous studies using GCNs for action analysis [7, 37, 57–59, 77], we set 𝐷 = 1 to adopt the 1-neighbor set of
each node.

3.1.3 Graph Convolution. Basically, a GC comprises two parts, one defines the way to sample data from the
input graph and the other concerns assigning learnable weight to the sampled data. It should be noted that a
higher-level knowledge about the subset of body parts relevant to specific activities is not manually provided in
the network. Therefore, only low-level rules like sampling and weighting are defined in the GC, which allows
the network to develop its own understanding about the body movement. In our case, the GC needs to conduct
sampling on the full-body graph comprising 22 nodes.
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Using the adjacency matrix A and identity matrix I𝑁 , we follow the forward-passing formula presented in [32]
to implement the GC used in this work as

f𝐺𝐶𝑜𝑢𝑡 = Λ̂− 1
2 ÂΛ̂− 1

2 f𝐺𝐶𝑖𝑛 W, (1)

where Â = A + I𝑁 represents the inter- and self-connection of each node, and Λ̂𝑖𝑖 =
∑
𝑗 Â𝑖 𝑗 is a diagonal degree

matrix of Â. Since Λ̂ is a positive diagonal matrix, the entries of its reciprocal square root Λ̂− 1
2 are the reciprocals

of the positive square roots of the respective entries of Λ̂. Each diagonal value in the degree matrix Λ̂ counts the
number of edges connecting the respective node in the graph described by Â. Such transformation from A to Â is
in accord with our choice of distance-partitioning [77], where each neighbor set is divided into two subsets for
weight assignment, namely the center node (I𝑁 ) and the neighbor nodes (A). f𝐺𝐶𝑖𝑛 is the input feature matrix, and
f𝐺𝐶𝑖𝑛 = XG

𝑡 at the first layer of input level. W is the layer-wise weight matrix. We refer readers to the appendix
section for a more detailed description about GC.

3.1.4 Connecting Graph Convolution with LSTM. For each module, the input to a single unit of the first LSTM
layer is the concatenation of the GC output from all the nodes in the graph G at timestep 𝑡 , denoted by f𝐺𝐶𝑜𝑢𝑡 (X

G
𝑡 ) =

[𝑓 𝐺𝐶𝑜𝑢𝑡 (𝜐𝑡1), . . . , 𝑓 𝐺𝐶𝑜𝑢𝑡 (𝜐𝑡𝑁 )]𝑇 . For the adopted forward-processing LSTM layer, the computation at each LSTM unit
is repeated to process the information across graphs from the first timestep to the last. Such conceptually-simple
design involving the GC only as a way to learn representations enables us to empirically study its impact on PBD
performances. In comparison, another study embedded GCwithin the LSTM unit [58]. While this may improve the
performance, it becomes more difficult to differentiate the advantage of each architecture component. Additionally,
some works proposed to improve performances by using extra computational blocks (e.g. fully-connected layers
or attention mechanisms [59, 79]) between GC and LSTM layers, which in turn add more trainable parameters to
the network that could lead to over-fitting on smaller datasets like ours.

3.2 Hierarchical Connection of HAR and PBD Modules
Up until this point, the GC-LSTM network used in each module of our proposed architecture has been defined.
Here, we describe how to connect HAR and PBD modules. In each module, a fully-connected softmax layer is
added to the GC-LSTM network for classification. Let the probability towards each class of the current input frame
to be P = [𝑝1, . . . , 𝑝𝐾 ] with 𝐾 denoting the number of classes, and the one-hot prediction to be Y. 𝐾 is 6, including
the 5 AoIs and transition activity class for the HAR module, and is 2 for protective and non-protective behavior of
the PBD module. In our proposed architecture, to provide activity-informed input from HAR to PBD, a node-wise
concatenation is used where the predicted activity label Y𝐻𝐴𝑅 is added to the input matrix XG

𝜐𝑡𝑖 = [𝑥𝑡𝑖 , 𝑦𝑡𝑖 , 𝑧𝑡𝑖 ] of
each node of the graph input for PBD (see Fig 2). Namely, for the PBD module, activity-informed input feature
matrix at a node 𝜐𝑡𝑖 of a single graph is XG,𝑃𝐵𝐷

𝜐𝑡𝑖 = [XG
𝜐𝑡𝑖 ,Y

𝐻𝐴𝑅]. Since the raw graph input fed to the PBD module
is joined by the output of the HAR module, we call such a hierarchical connection between the two.

3.3 Addressing Class Imbalances during Training with CFCC Loss
A problem with datasets simulating real-life situations is class imbalance (e.g. datasets for HAR [52, 54, 63]). In
the case of the EmoPain dataset, protective behavior is sparsely spread within the AoIs of each data sequence,
while it is generally absent during transition activities (see Fig 1). Specifically, on average the AoIs represent
only 31.71% of a participant’s data sequence, with the rest being transition activities. Furthermore, on average,
samples labelled as protective behavior represent only 21.09% of a patient’s data sequence, with the rest labelled
as non-protective. Typical approaches used to address class imbalance include: i) data re-sampling for each class,
where samples are either duplicated from the less-represented class or randomly sampled from the majority
class [11]; ii) loss re-weighting, e.g. setting higher weights for the less-represented class and lower weights for
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the majority class [24]. Unfortunately, these require interferences with data samples that could also harm the
training of a model [9].

In our work, we propose to use a loss function that directly alleviates class imbalance during training. Normally,
for the supervised learning of our modules, the following categorical cross-entropy loss (CCE) [35] is used

Lcategorical (P,Y) = −Y log (P) , (2)

where P = [𝑝1, . . . , 𝑝𝐾 ] is the predicted probability distribution of an input frame over the 𝐾 classes, and Y is the
respective one-hot categorical ground truth label with Y(𝑘) = 1 only for the ground truth class 𝑘 . During training,
the loss computed for each frame is added up to be the total loss for the model to reduce. Such function tends to
bias the model to put more attention on decreasing the loss in the majority class and ignores the (mis)classification
of the less-represented classes (e.g. the AoI classes in the HAR task or the protective behavior class in the PBD
task).
To address this problem, we took inspiration from the research on automatic object detection. In object

detection domain, a binary-class imbalance exists given the smaller area covered by the object-of-interest and the
larger objectless background. Two main approaches proposed in this direction are the focal loss [38] and the
class-balanced term [9]. Based on binary cross-entropy loss [35], focal loss applies a sample-wise factor function
adjusting the loss weight for a sample based on its classification difficulty (judged by the predicted probability
towards the ground truth class). The focal loss (FL) together with binary cross-entropy loss (CE) can be written as

LFL (𝑝,𝑦) = (1 − 𝑝GT )𝛾Lbinary (𝑝,𝑦) = −(1 − 𝑝GT )𝛾 (𝑦 log(𝑝) + (1 − 𝑦) log(1 − 𝑝)), (3)

where 𝑝 is the predicted probability towards the positive class of the current data sample, 𝑦 is the binary ground
truth indicator with 1 for the positive class and 0 for the negative class, 𝑝𝐺𝑇 = 𝑦𝑝 + (1−𝑦) (1− 𝑝) is the predicted
probability towards the ground truth class. As we can see, the factor (1 − 𝑝𝐺𝑇 )𝛾 with tunable hyper-parameter
𝛾 ≥ 0 is added to the original binary cross-entropy loss. The intuition is to reduce the loss computed from data
samples that are well-classified, while the threshold for judging this needs to be tuned given different datasets
and is controlled by 𝛾 . The increase of 𝛾 will reduce the threshold, then data samples with comparatively lower
classification probabilities toward the ground truth class would be treated as the well-classified.
In [9], the authors further revised the vanilla cross-entropy loss by adding a class-wise loss weight to each

class based on the so-called effective number of samples within it. For class 𝑐 , the effective number of samples is
denoted as 𝐸𝑛𝑐 =

1−𝛽𝑛𝑐
1−𝛽 , with a hyper-parameter 𝛽 ∈ [0, 1) controlling how fast the effective samples number 𝐸𝑛𝑐

grows when the actual number of samples 𝑛𝑐 increases. The class-balanced term is the reciprocal of 𝐸𝑛𝑐 , written
as

1
𝐸𝑛𝑐

=
1 − 𝛽
1 − 𝛽𝑛𝑐 . (4)

Unlike the binary imbalance caused by the area of object and its useless background, in the HAR module, class
imbalances exist among the 6 categories of activity, while in PBD both protective and non-protective classes
share the same importance. Therefore, to adapt the focal loss and class-balanced term to scenarios of HAR and
PBD, we replace the CE with CCE and combine the Equation 2-4 as

LCFCC (P,Y) = − 1 − 𝛽
1 − 𝛽𝑛𝑘 (1 − YP)𝛾Y log(P), (5)

where 𝑛𝑘 is the number of frames of the ground truth class 𝑘 for the current input frame. This revised function,
referred to as Class-balanced Focal Categorical Cross-entropy (CFCC) loss, will be used in our study. To the
best of our knowledge, this is the first time for such a combination to be used for the computation of multi-class
categorical cross-entropy loss in HAR and PBD. With CFCC loss, we aim to alleviate class imbalances during
training and also to understand its impact in comparison with the other component of our architecture.
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4 EXPERIMENT SETUP
In this section, we describe more details about the dataset, validation method, metrics, and model implementations.

4.1 The EmoPain Dataset and Data Preprocessing
The EmoPain dataset [6] used in this study contains movement data collected from 18 IMUs of 12 healthy and 18
CP participants. The placement of IMUs is illustrated in Fig 3(a). Four wireless surface electromyographic sensors
(sEMG) were also used and placed on upper and lower sections on the back of a participant to capture the muscle
activity. In this paper, we focus on the movement data and leave the exploration of muscle activity to future work.
As part of the EmoPain dataset, the annotation of protective behavior was provided by four domain-expert raters,
including 2 physiotherapists and 2 clinical psychologists. Each expert rater independently inspected the on-site
video of each CP participant that was collected in synchrony with the wearable sensor data. They marked the
timesteps where each period of protective behavior started and ended. The healthy participants were assumed to
show no protective behavior despite having their own idiosyncrasies.

A sequence of functional activities was designed by physiotherapists, comprising one-leg-stand, reach-forward,
stand-to-sit, sit-to-stand and bend-down. These activities were selected to reflect the physical capabilities necessary
for carrying out daily functioning. For instance, a person may need to reach forward to take an object placed on
the far-end of a table, or bend down to load the washing machine. They can be also considered as the building
blocks for more complex functional activities. For example, reach-forward is usually adopted during kitchen
cleaning. Therefore, the HAR experiment conducted in this work will shed light on relevant HAR studies. Avatar
examples of healthy and CP participants conducting the five AoIs are shown in Fig 4. The figure illustrates several
strategies used by the CP participant as forms of protective behavior: i) unwilling or unable to raise a leg during
one-leg-stand; ii) avoidance of bending the trunk during reach-forward and bend-down; iii) hesitation, trunk
twisting and shoulder side inclination for arm support during stand-to-sit and sit-to-stand.
Each participant went through at least one trial of the activity sequence (∼ 10 mins), while 5 healthy and 11

CP participants executed both the normal and difficult trials. As a result, we have a total of 46 activity sequences
from 30 participants. During the normal trial, participants were free to perform these activities without any
constraint. In the difficult trial, they were required to start the activity under the instruction of the experimenter
and carry an extra 2kg weight with both hands or in each hand during reach-forward and bend-down respectively
to simulate picking up daily objects (e.g. shopping bags as typically suggested by physiotherapists). Such difficulty
is added to capture the movement of a participant under external pressure or needs. However, no instructions
of how the movement should be performed were provided, to ensure participants performed the activity in
their own way as in real life. Between trials or activities, they were allowed to take breaks as needed to relax or

Fig. 4. Avatar examples of 3D joint coordinates data from healthy and CP participants performing the five AoIs.
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decrease muscle tension. The annotation of activity type was conducted manually by the EmoPain researchers,
defining the starting and ending timesteps of each individual activity.

4.1.1 3D Joint Coordinates as Input. Since the basic processing component of our proposed architecture operates
on skeleton-like graphs, 3D coordinates of the 22 joints calculated from the 18 IMUs data are directly used. This
differs from previous studies [47, 48, 73–75] on the same dataset, where low-level features as energies and angles
between body segments were used. As described in Section 3.1.1, the 3D joint coordinates were calculated from
the BVH data returned by the motion capture suit (MetaMotion IGS-190 [42]) using a Matlab MoCap toolbox
[34]. The BVH data comprises the skeleton proportion, sensor placements, accelerometer, and gyroscope data
sequences recorded at 60Hz.

4.1.2 Continuous Data Segmentation with Sliding-Window. Using a sliding window of 3s long and 50% overlapping
ratio, each activity sequence of a complete trial of a participant is segmented into consecutive frames from the
start of the first AoI to the end of the last AoI/transition activity. The window length and overlapping parameters
are based on the evaluation studies reported in [73, 74]. At timestep 𝑡 , we have an input graph G𝑡 = (𝑉𝑡 , 𝐸𝑡 ),
represented by the input data matrix XG

𝑡 , constant adjacency matrix A ∈ {0, 1}22×22, and its identity matrix I22,
where XG

𝜐𝑡𝑖 = [𝑥𝑡𝑖 , 𝑦𝑡𝑖 , 𝑧𝑡𝑖 ] , 𝜐𝑡𝑖 ∈ 𝑉𝑡 . These matrices only represent the graph structure and 3D joint coordinates
data of each joint. The graph structure simulating the human body includes the set of nodes and their connections.
The activity class ground truth, i.e. one-leg-stand, reach-forward, sit-to-stand, stand-to-sit, bend-down, and the
transition, of a frame is defined by applying majority-voting to the 180 samples within it. The protective behavior
ground truth of a frame is decided by another majority-voting across the 4 domain-expert raters in accord with
[73–75]. A frame is labelled as protective behavior if at least 50% of the samples within it had been considered as
protective behavior by at least two expert raters separately.

4.1.3 Data Augmentation. In order to address the limited size of EmoPain dataset, we apply a combined data
augmentation approach that has shown clear improvement in performance in a previous work on the same
dataset [73], namely Jittering and Cropping [68]. For jittering, the normal Gaussian noise is globally applied with
standard deviations of 0.05 and 0.1 separately to the original data sequence. For cropping, data samples at random
timesteps and joints are set to 0 with selection probabilities of 5% and 10% separately. These augmentations
are also beneficial for simulating the real-life situations of signal noise and accidental data loss. Each single
augmentation method would create two extra augmented data sets, which is only used in the training set. The
original number of frames produced with the sliding-window segmentation from all participants is approximately
6200, and is increased to around 31𝐾 after the augmentation.

4.2 Validation Method and Metrics
For all the experiments, a LOSO validation is applied. For each testing participant, both the normal and difficult
trials (if conducted) are left out. It should be noted that data augmentation is only applied to the training data,
while the original data of the participant left out for testing stays untouched. For HAR, we report the accuracy
(Acc) and macro F1 score (Mac.F1) to account for performances of all classes [69]. For PBD, as it is a binary task
suffering from class imbalance, we additionally use the protective-class classification output of all folds to plot
precision-recall curves (PR curves) and report the area-under-the-curve (PR-AUC) [55].

4.3 Model Implementations
A search on number of layers, convolutional kernels, and hidden units for the GC-LSTM network is conducted to
identify the suitable hyper-parameter set for HAR and PBD modules separately: i) for HAR, we use one GC layer
with 26 convolutional kernels, three LSTM layers with 24 hidden units of each, and one fully-connected softmax
layer with 6 nodes for output; ii) for PBD, we use three GC layers with 16 convolutional kernels of each, three
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LSTM layers with 24 hidden units of each, and one fully-connected softmax layer with 2 nodes for output. A
dropout layer with probability of 0.5 is added to each GC layer and LSTM layer to alleviate the overfitting risk for
all the models. If not mentioned, the default loss used for all the models is the vanilla categorical cross-entropy
loss described in Equation 2. In CFCC loss, the class-balanced term does not vary per sample, instead it is acquired
for a class given the number of samples therein, so is computed and fixed before network training. Thereon,
we further conduct a hyper-parameter search on 𝛾 = {0, 0.5, 1, 1.5, 2, 2.5} and 𝛽 = {0.9991, 0.9995, 0.9999} for
both tasks separately using the respective HAR or PBD module alone. We find 𝛾 = 0.5, 𝛽 = 0.9999 to be suitable
for HAR, and 𝛾 = 2, 𝛽 = 0.9999 for PBD. The Adam algorithm [31] is used as optimizer for all the models,
while the learning rate is set to 5𝑒−4 for the HAR module and 1𝑒−3 for PBD module, after another search on
lr = {1𝑒−5, 5𝑒−5, 1𝑒−4, 5𝑒−4, 1𝑒−3, 5𝑒−3}. The number of epochs is set to 100 for all the models. The OPTUNA [2]
framework is used for the hyper-parameter search. During the hyper-parameter search, a hold-out validation
is adopted where 11 healthy and 17 CP participants are randomly selected to be the training set, with the rest
left out for validation. The validation data is then removed for the respective LOSO experiments. The aim of the
hyper-parameter search is to determine a proper set of hyper-parameters to aid the following experiments.

5 RESULTS
The evaluation concerns several components of our proposed hierarchical HAR-PBD architecture, namely the
use of graph representation, CFCC loss, and the hierarchical architecture connecting HAR and PBD modules. We
conclude by evaluating different training strategies of the hierarchical architecture, and its performances under
different sizes of the body graph input.

5.1 Contribution of Graph Representation to Continuous PBD
The first aim of our evaluation is to understand the contribution of graph representation in comparison with
other learning approaches to the PBD performance. Hence, we conduct a set of experiments using the PBD
module alone, without the use of the entire hierarchical architecture and CFCC loss. The evaluation is conducted
against the stacked-LSTM [74] and BANet [75], which either take i) joint angles and energies; or ii) 22 pairs of
3D joint coordinates as input. For stacked-LSTM, at each timestep we merely concatenate the coordinates of 22
joints to form the input matrix with a dimension of 22 × 3 = 66. Accordingly, the input structure of BANet is
adapted for 22 pairs of coordinates as illustrated in Fig 5. The search on number of LSTM layers, hidden units,
and learning rates is also conducted for the two comparison models respectively under each input condition.
Differently from their original studies [74, 75] that relied on pre-segmentation of activity instances, both methods
are applied here over the full data sequences in a continuous manner. Results are reported in Table 1 with PR
curves plotted in Fig 6. As shown, the PBD GC-LSTM produces the best accuracy of 0.82, macro F1 score of 0.66,
and PR-AUC of 0.44. The actual difference between these compared methods is the way the input data is processed
with, i.e., traversal processing (stacked-LSTM [74]), local processing (BANet [75]), and graph representation
(PBD GC-LSTM). As such, the results suggest that the graph representation may indeed contribute to improving
the continuous detection of protective behavior. Still, the below-chance-level (< 0.5) results of PR-AUC of all

Fig. 5. Input structures of a) the original BANet, and b) the adapted BANet for 22 pairs of 3D joint coordinates.
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Table 1. PBD results of different representation learning methods, the best method is marked in bold

Methods Acc Mac.F1 PR-AUC
Stacked-LSTM (angle+energy) 0.79 0.61 0.23
BANet (angle+energy) 0.78 0.56 0.24
Stacked-LSTM (coordinate) 0.80 0.64 0.32
BANet (coordinate) 0.79 0.63 0.27
PBD GC-LSTM 0.82 0.66 0.44

Fig. 6. PR curves of different representation learning methods.

methods demonstrate the difficulty of PBD in continuous data sequences. This implies the need to further improve
continuous PBD with HAR and CFCC loss.

5.2 Contribution of CFCC Loss and HAR
Through an ablation study, here we first investigate the contribution of CFCC loss alone in dealing with the
imbalanced data for each module of our proposed architecture. We then use our proposed hierarchical architecture
to understand the impact of activity-class information produced by the HAR module on PBD performance. In
particular, we aim to understand if recognizing the activity background has more impact on improving PBD in
continuous data sequences, in comparison with the issue of class imbalances during training.

5.2.1 Contribution of CFCC Loss to Continuous HAR. In our proposed hierarchical HAR-PBD architecture, the
HAR GC-LSTM together with CFCC loss was firstly pre-trained on the same set of data using activity labels.
Then, the weight achieving the best activity recognition performance was saved and frozen during the training of
the entire architecture. For the training and testing of the hierarchical architecture, the HAR output was used as
auxiliary information to contextualize the PBD. Therefore, the accuracy of the HAR module is important. Here,
we analyze the performance of the HAR GC-LSTM alone with and without CFCC loss. The results are reported in
Table 2, with confusion matrices shown in Fig 7. The CFCC loss leads to a higher macro F1 score (0.81 vs. 0.79) in
the continuous HAR. Judging from the confusion matrices, CFCC loss reduces the classification bias towards the
most represented class (the transition activity), which resulted in a lower accuracy though (0.88 vs. 0.89). These
results show the effectiveness of CFCC loss for balancing multi-class categorical loss computation, which was
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Table 2. HAR results of the ablation study, the best method is marked in bold

Methods Acc Mac.F1
HAR GC-LSTM 0.89 0.79
HAR GC-LSTM with CFCC loss 0.88 0.81

Fig. 7. Confusion matrices of a) HAR GC-LSTM and b) HAR GC-LSTM with CFCC loss, where the bias towards the
majority class of transition is balanced. OLS=one-leg-stand, RF=reach-forward, SITS=sit-to-stand, STSI=stand-to-sit, and
BD=bend-down.

not directly evaluated in the original studies [9, 38]. As is seen in Section 3.3, the computation of CFCC loss is
independent of learning models and requires the only prior knowledge of number of samples per class. Therefore,
CFCC loss should be useful for HAR tasks on relevant datasets.

5.2.2 Contribution of CFCC Loss to Continuous PBD. Here we investigate the contribution of CFCC loss to
continuous PBD using the PBD GC-LSTM. The input to PBD GC-LSTM is the 3D joint coordinates data without
activity-class information. As we can see from the results in Table 3, the use of CFCC loss leads to 5% improvement
in macro F1 score (macro F1 score of 0.71 vs. 0.66). Confusion matrices shown in Fig 8(a)(b) suggest that the
CFCC loss does indeed help penalize the bias towards the more frequent class (non-protective class in this case)
while improving the recognition of the less-represented one (protective class). However, the PR-AUC of 0.48 is
still below chance level, suggesting that addressing class imbalance alone is not sufficient.

Table 3. PBD results of the ablation study. The proposed method (marked in bold) outperforms other variants by at least 8%
in macro F1 score and PR-AUC

Methods Acc Mac.F1 PR-AUC
PBD GC-LSTM 0.82 0.66 0.44
PBD GC-LSTM with CFCC loss 0.83 0.71 0.48
Hierarchical HAR-PBD architecture 0.84 0.73 0.52
Hierarchical HAR-PBD architecture with CFCC loss 0.88 0.81 0.60
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5.2.3 Proposed Method: Hierarchical HAR-PBD Architecture with CFCC Loss. For the training and testing of our
proposed hierarchical HAR-PBD architecture, the HAR GC-LSTM within it is frozen and loaded with the weights
from its pre-training with CFCC loss. This is to keep the HAR performance constant and aid the understanding
of the impact of continuously inferred activity information on continuous PBD. The results are reported in
Table 3, with confusion matrix shown in Fig 8(c). It is interesting to see that our proposed hierarchical HAR-PBD
architecture using vanilla categorical cross-entropy loss achieved an improvement of 2% with respect to the
PBD GC-LSTM alone using CFCC loss (macro F1 score of 0.73 vs. 0.71). The PR-AUC of 0.52 is also above chance
level. Such result shows that the contextual information of activity type contributes to continuous PBD with our
proposed hierarchical HAR-PBD architecture being a practical way to leverage such information. Furthermore,
by adding CFCC loss to the PBD module of the hierarchical HAR-PBD architecture, higher macro F1 score of 0.81
and PR-AUC of 0.60 are achieved (confusion matrix shown in Fig 8(d)). The PR curves for the PBD ablation study
are plotted in Fig 9. These results add to our previous finding and show that using a mechanism (CFCC loss in
our case) to address the class imbalance problem led to a further-clear improvement. In general, our experimental
results suggest that both the activity type information and CFCC loss are necessary for continuous PBD despite
one being more effective than the other.

Fig. 8. Confusion matrices for PBD methods in the ablation study. NP= non-protective, P=protective.

Fig. 9. PR curves of different PBD methods in the ablation study.
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5.3 Comparing Training Strategies of the Hierarchical Architecture
In the previous subsections, the HAR module used in hierarchical HAR-PBD architecture was pre-trained with the
same training data using activity labels and frozen to adopt the model of best activity recognition performance.
The aim was to understand the contribution of HAR to PBD across the different configurations. Here, we further
explore the relationship between HAR and PBD modules by exploring joint-training strategies of the hierarchical
architecture. In joint-training of the architecture, the HAR module would not be frozen but the activity labels are
still used to update it when the PBD module is trained. Specifically, the protective behavior labels of the same
data input together with the output of HAR module are used to train the PBD module. Thereon, we compare
the following four joint-training strategies together with the use of CFCC loss: 1) Joint HAR(CFCC)-PBD and
Joint HAR-PBD(CFCC), where HAR and PBD modules are initialized and trained together using activity and
protective behavior labels respectively, with CFCC loss only added to either the HAR or PBD module; 2) Joint
HAR-PBD with CFCC, where CFCC loss is added to both modules in such joint training; 3) Pre-trained Joint
HAR(CFCC)-PBD and Pre-trained Joint HAR-PBD(CFCC), similar to (1) where the only difference is that the
HAR module is first trained alone with activity labels using CFCC loss to achieve the best activity recognition
performance and then its training continues with the training of the PBDmodule; 4) Pre-trained Joint HAR-PBD
with CFCC, where CFCC loss is added to both modules in the joint training of (3).
For all these joint training strategies, the loss weights are set to {1.0, 1.0} for both HAR and PBD modules.

If CFCC loss is not mentioned, the loss used for the respective module is the vanilla categorical cross-entropy
loss described in Equation 2. We also compare them with our default method used in previous subsections, here
referred to as Pre-trained HAR(Frozen)-PBD(CFCC), where the HAR module is first trained alone with activity
labels and CFCC loss to achieve the best activity recognition performance per LOSO fold, then it is frozen with
weights loaded and used in the hierarchical architecture for training and testing of the PBD module. Results are
reported in Table 4, with the PR curves for PBD results plotted in Fig 10.
Without pre-training the HAR module, the best HAR, with macro F1 score of 0.56, and PBD performances,

with macro F1 score of 0.74 and PR-AUC of 0.55, are achieved by the joint HAR-PBD(CFCC). However, by adding
CFCC loss to the HAR module alone (joint HAR(CFCC)-PBD), the performances are reduced notably for the HAR
and slightly for PBD. One explanation could be that the error passed back from the PBD module harmed the HAR
performance, especially when such error of PBD was not well handled e.g., without using CFCC loss. On the
other hand, by adding CFCC loss to both modules (joint HAR-PBD with CFCC), the HAR performance achieved
of macro F1 score of 0.54 is comparable to joint HAR-PBD(CFCC) but the PBD performance is much lower, with
macro F1 score of 0.71 and PR-AUC of 0.45. Given the current hierarchical architecture, such results suggest

Table 4. HAR and PBD results for different training strategies of the Hierarchical HAR-PBD architecture, the best method is
marked in bold

HAR PBD
Training strategies Acc Mac.F1 Acc Mac.F1 PR-AUC
Joint HAR(CFCC)-PBD 0.62 0.42 0.85 0.70 0.54
Joint HAR-PBD(CFCC) 0.76 0.56 0.84 0.74 0.55
Joint HAR-PBD with CFCC 0.66 0.54 0.81 0.71 0.45
Pre-trained Joint HAR(CFCC)-PBD 0.68 0.55 0.85 0.74 0.58
Pre-trained Joint HAR-PBD(CFCC) 0.84 0.73 0.87 0.79 0.58
Pre-trained Joint HAR-PBD with CFCC 0.72 0.64 0.85 0.76 0.55
Pre-trained HAR(Frozen)-PBD(CFCC) 0.88 0.81 0.88 0.81 0.60
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Fig. 10. PR curves of the hierarchical architecture under different training strategies.

that alleviating class imbalance in PBD has a stronger impact on the overall performance in joint training, while
addressing it in HAR penalizes the PBD performance.

Rather than to start joint training from scratch, we further look into the uses of pre-training of the HAR module
to reach an initial best activity recognition performance of macro F1 score of 0.81 before joint-training. A similar
outcome as above is observed where the best performance is achieved by adding CFCC loss to the PBD alone.
Once again this proved the higher impact of alleviating the class imbalance of PBD, as the error passed back from
the PBD module could harm the training of HAR module. In general, the results show that a pre-training of the
HAR module improved the final performances of both HAR and PBD modules in comparison to the ones without
it.
The performances achieved by the various joint-training strategies of the hierarchical architecture are still

lower than the one of freezing the HAR module as used in previous subsections, for both HAR, with macro F1
score of 0.81, and PBD, with macro F1 score of 0.81 and PR-AUC of 0.60. It should be noted that this method
is a two-stage process in training and an end-to-end process in inference. Although these results highlight
the importance of HAR performance to PBD, they also suggest that the error propagated back from the PBD
module in joint-training was not informative to improve the HAR performance. This highlights the need to
investigate the interaction scheme between HAR and PBD modules, beyond error back-propagation. We leave
such an exploration to future work.

5.4 Simulating Fewer IMUs
Until this point, we have assumed all 18 IMUs to be available to enable the input of a full-body graph. In this
experiment, we quantify the fluctuation in performance when fewer IMUs are available. We simulate the limited
availability of IMUs by removing nodes (containing the data of respective joints) from the full-body graph.
According to the study on human observation of protective behavior [47], protective movement strategies are
often visible on both sides of the body even if via different patterns. For example, a twisting of the trunk to reach
for a chair may lead to a narrower angle between the arm and the trunk on one side but a compensatory-larger
angle between another arm and the trunk. Therefore, a one-side sensor set of 14 nodes is created, where nodes
number of 2-4 and 10-14 on the left limbs of the full-body graph are removed. Second, to simulate an even more
compact sensor set, we further remove nodes number of 6, 8, 15, 17, 18, 20, and 21 from the one-side sensor set,
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Fig. 11. Graph structures of the four sensor sets. The blue contour marks the neighbor set of each centered node in green.

resulting in a smallest one-side sensor set of 7 nodes. Additionally, from the full-body graph, we symmetrically
remove nodes number of 3, 4, 6, 7, 8, 10-13, 15-18, 20, and 21 from both body sides to create a smallest symmetric
sensor set with 7 nodes as well. The graph structures of these sensor sets still simulate human body connections,
as shown in Fig 11. The hierarchical HAR-PBD architecture with CFCC loss is used here on the graph input
extracted from each sensor set. For a fair comparison, we conducted another search to determine the suitable
hyper-parameters under each condition, with the process detailed in Section 4.3. The HAR and PBD results of
each sensor set are shown in Fig 12, with PR curves for the PBD results plotted in Fig 13.

Although the best PBD performance is obtained by using the default graph input of 22 nodes (macro F1 score
of 0.81 and PR-AUC of 0.60), competitive results are achieved using the one-side graphs with number of nodes
reduced to 14 (macro F1 score of 0.77 and PR-AUC of 0.55) and even 7 (macro F1 score of 0.76 and PR-AUC of
0.53). These results are better than the ones achieved using the hierarchical architecture alone without CFCC
loss on the full-body graph (macro F1 score of 0.73 and PR-AUC of 0.52). On the other hand, given the same
number of 7 nodes, the worst performance is achieved by the smallest symmetric sensor set that follows a general

Fig. 12. HAR and PBD results of the hierarchical HAR-PBD architecture with CFCC loss using input of different sensor sets.
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Fig. 13. PR curves of the hierarchical architecture with CFCC loss using input of different sensor sets.

practice of retaining nodes on both sides of the body (macro F1 score of 0.75 and PR-AUC of 0.51). This shows
advantage of using an observation-driven strategy in guiding the sensor-set reduction, in the context of PBD.
Generally, it is empirically verified that the proposed hierarchical HAR-PBD architecture with CFCC loss leads to
improvement even with small sensor sets. In order to further improve the PBD performance, efforts could be
made on i) designing better graph structure, since in this work we merely employed the human-body connections;
ii) further exploring the configurational pattern of body movement in the context of CP rehabilitation, given the
performance achieved by one-side sensor sets.

6 DISCUSSION
We discuss here our open challenge, current limitations, and possible use cases of the proposed method.

6.1 The Challenge and Current Limitations
The major challenge for ubiquitous-computing research in CP management is the lack of very large datasets.
This is a problem we face as moving into real-world applications. The EmoPain dataset [6] comprises 18 CP and
12 healthy participants, the data collection and annotation of which took nearly a year to finish according to the
authors. It is widely acknowledged that collecting data from patients is challenging given increasingly strict data
protection regulations and privacy issues. In order to fully leverage the existing data for our model development,
we followed the experience of previous studies [73–75] to use data augmentations [68]. As wearable technology
becomes easier to use in everyday scenarios, we plan a future long-term data collection. Other limitations of this
work with possible solutions for the future are summarized as follows.

6.1.1 The Dependence on Manual Annotation. Our proposed architecture is a pure supervised-learning method
that relies on manual annotations, particularly domain-expert ratings of behavior. With expert annotation of
protective behavior, labelling frames by majority voting can be problematic, possibly biasing the model in favor
of part of the experts. In future work, we would treat this as a noisy-label problem, and model each expert’s
annotation separately while gaining better consensus via a multi-expert architecture [66]. On the other hand,
the annotation of activities is challenging given the variety in performances of CP participants. Particularly,
discriminating the margin between the activity-of-interest and transition is often difficult and may lead to the
misclassification of transition towards AoIs, as reported in Appendix A.2. Our current practice of using majority
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voting is also unable to deal with the situation when multiple activities exist on the same frame. For this problem,
we plan to follow the recent progress in ambiguous activity annotation [33] to drive our future research.

6.1.2 Limited Interaction between HAR and PBD Modules. Our experiments show that the HAR module improves
PBD, while the error propagated back from the PBD module is not particularly informative to refine the HAR
module. Therefore, aside from simple error back-propagation, one could establish a better interaction scheme
between the two. Thereon, a factor could be considered is the granularity of protective behavior type. In this
paper, the five typical classes of protective behavior (guarding, stiffness, hesitation, the use of support, and jerky
motion) [30] were pulled together and modelled as one class, given the limited number of instances per each
type. If modelled separately, these may add more insight to the type of activity being performed. For instance,
support is used more during bend-down or stand-to-sit. Hence, future data collection for similar applications
should consider how to increase the number of instances per behavior type.

6.1.3 The Use of Large IMUs Network. For most experiments in this work, a set of 18 IMUs was assumed to be
available to provide data of the full-body graph (22 joints). So many IMUs are not usually directly taped to the
body, and we do not expect this to be the case when the system is deployed. In fact, ubiquitous motion capture
suits that facilitate sensor wearability, e.g. the MetaMotion IGS-190 [42] (used for the EmoPain dataset) and
Xsens MVN [43], have been around for a long time. An example of the user wearing the MoCap suit is shown
in Fig 14. Both systems are integrated, wireless, and consider users’ comfort. However, such motion capture
systems are still expensive even though the IMU sensors are becoming cheaper, more accurate, and wearable (e.g.,
invisible, washable, or transferable between clothes [26]). Currently, it is out of the scope of this paper to develop
the suit or integrate sensors into patients’ clothes. Still, this remains an open area for hardware developers and
fashion designers to propose better solutions. Progress in ubiquitous computing (as the one in our work) may
lead to further advances in hardware development, a very active area e.g. the integration of multiple sensors in
sport garments. Studies with clinicians and patients show that such advancement is very desirable to manage the
conditions [49, 50]. Hopefully, our research may further augment such wearable devices with PBD capabilities
and extend applications to rehabilitation and clinical contexts. The original aim of this work is, with a large set of
sensors, to understand what is feasible and then explore how to improve it. Several studies have recently aimed
to combine sparse IMUs or just accelerometers (less than 6 sensors) and visual clues to reconstruct full-body
motions [67, 72]. Given the highest performance is achieved by using full-body graphs, we can follow this work
to simulate full-body movement data using a smaller sensor set.

Fig. 14. An example of the user wearing the Xsens MVN motion capture suit.
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6.2 Future Use Cases
While the goal of our study was not to build a ubiquitous support system for pain management, our architecture
is a key component of such a system as performance of continuous PBD is critical for effective support. It should
be noted that contextualization provided by the HAR module not only leads to improved PBD performance, but
informs assessment of people with CP and customizes timely support for self-management. We discuss here the
main use cases and further developments that can exploit our proposed hierarchical architecture to deliver new
types of support and interventions in CP management and beyond.

6.2.1 In-the-Wild-Informed Clinical Rehabilitation. Clinicians need to know about patients’ difficulties in everyday
activity [8], beyond the safe environment of the clinic, and without reliance on self-reported behaviors (e.g.,
diaries) that are commonly used but of low reliability [60] since awareness of habitual protective behavior and
their triggers is low [16]. A ubiquitous system, capable of recognizing activity context and continuously detecting
protective behavior, can provide clinicians with better understanding of the patient’s activity difficulties, and of
progress, which often varies across AoIs. Connected to GPS and time, the system could further contextualize the
activity, with factors that add stress, e.g. social pressures.

6.2.2 Patient-Oriented Ubiquitous Self-Management. Difficulty transferring movement strategies learned in the
clinic to everyday life is common, because of the complexity of the real world (environment, social demands,
variety of activities, and responsibilities, etc.), and interference by emotional states [48]. In [60, 62], a ubiquitous
system transforms real-time movements (of specific body parts) into sound (sonification) to increase awareness in
people with CP of their physical capabilities. This further facilitates the autonomous use of movement strategies
of the user beyond the clinic. If integrated in such ubiquitous system, our HAR-PBD architecture could help
identify when advice is needed, e.g. when the frequency of protective behavior during specific activities rises
above a certain level; it can instantly provide reminders about breathing and taking breaks. Taking breaks and
relaxation are important pacing strategies to avoid setbacks and prolonged recovery. During exercise, the system
can also provide dedicated suggestions or exercise plans based on the frequency of protective behavior detected.

6.2.3 Beyond Chronic-Pain Management to Next-Stage Human Activity Analysis. Beyond supporting the manage-
ment of CP, our proposed hierarchical architecture could be applied in a variety of contexts where ubiquitous HAR
technology is being leveraged. For example, ubiquitous HAR technology is opening new platform to aid workers
in factory assembly lines [51], to support them in their workspace activities, e.g. to identify and help correct
mistakes, to aid training, and establish human-robot collaboration. Thereon, another interesting application is to
promote workers’ wellbeing, such as in reducing mental or physical stress. Our architecture can be integrated
into the system to leverage HAR for detecting cues of fatigue or pain. Such a system could help identify the
need for a break and adjust working timetables. These are essential to minimize development of musculoskeletal
conditions, a common problem in manufacturing industries. In similar contexts, the number of sensors could be
reduced to fit the specific activities and relevant movements.

Another active area of application is in healthcare. For instance, in [18], limb movement was assessed to screen
perinatal stroke in infants, while arm movement was continuously analyzed to track everyday rehabilitation of
stroke patients [21]. For these, integration of our hierarchical architecture in the system could help establish the
link between the type of activity/movement and the behavior category (e.g. good or poor rehabilitation engagement
in [21], and even pain or anxiety). Such activity-aware functions could allow more in-depth understanding of the
patient and generate opportunities for personalized support.

7 CONCLUSION
Ubiquitous technologies open new opportunities for supporting people with CP during their everyday activity.
In this paper, we targeted PBD in continuous movement data as the critical first step. We proposed a hierarchical
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HAR-PBD architecture to recognize the varying context of activity to aid the simultaneous detection of protective
behavior. An adapted CFCC loss was also used to alleviate class imbalances of continuous data during training.
Our evaluation with data from real patients suggested that the activity type information is effective to aid PBD in
continuous data, leading to a notable improvement over the baseline (macro F1 score of 0.73 and PR-AUC of 0.52
vs. macro F1 score of 0.66 and PR-AUC of 0.44), and is more impactful than just solving class imbalances (macro
F1 score of 0.71 and PR-AUC of 0.48). The best result was achieved by combining the hierarchical architecture
with CFCC loss, with macro F1 score of 0.81 and PR-AUC of 0.60. Additionally, in Section 5.1, we verified that
graph representation improves the PBD performance. In Section 5.3, we showed that it is feasible to jointly train
the hierarchical HAR-PBD architecture. However, work is needed to gain mutual improvement between HAR and
PBD modules. In Section 5.4, we showed the applicability and efficacy of our method using fewer nodes/joints
(macro F1 scores of 0.77 and 0.76 with 14- and 7-node data input respectively). In subsequent research, we hope
to build on the findings of this paper to establish a ubiquitous CP management system, considering real-world
challenges and proper interactions between the user and system.
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A APPENDICES
Here we first describe in detail the GC function used in this paper. Then, we analyze the error of each component
of the proposed hierarchical HAR-PBD architecture with CFCC loss via visualization.

A.1 The Graph Convolution Function
Following the derivation of GCN presented in [77], the GC used in this work can be written in detail as

𝑓 GC𝑜𝑢𝑡 (𝜐𝑡𝑖 ) =
∑

𝜐𝑡 𝑗 ∈N(𝜐𝑡𝑖 )

1
𝑍𝑡𝑖 (𝜐𝑡 𝑗 )

𝑓 GC𝑖𝑛 (pGC (𝜐𝑡𝑖 , 𝜐𝑡 𝑗 )) · wGC (𝑙𝑡𝑖 (𝜐𝑡 𝑗 )), (6)
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where pGC (𝜐𝑡𝑖 , 𝜐𝑡 𝑗 ) = 𝜐𝑡 𝑗 is the graph-adapted sampling function with 𝑑 (𝜐𝑡𝑖 , 𝜐𝑡 𝑗 ) ≤ 1, wGC (𝜐𝑡𝑖 , 𝜐𝑡 𝑗 ) = w′(𝑙𝑡𝑖 (𝜐𝑡 𝑗 ))
is the graph-adapted weight function with 𝑙𝑡𝑖 (𝜐𝑡 𝑗 ) = 𝑑 (𝜐𝑡𝑖 , 𝜐𝑡 𝑗 ), w′ is the trainable weight matrix, 𝑓 GC𝑖𝑛 is the
input feature of the sampled node set at current layer while 𝑓 GC𝑜𝑢𝑡 is the output feature of the respective centered
node 𝜐𝑡𝑖 , and 𝑍𝑡𝑖 (𝜐𝑡 𝑗 ) = card({𝜐𝑡𝑘 | 𝑙𝑡𝑖 (𝜐𝑡𝑘 ) = 𝑙𝑡𝑖 (𝜐𝑡 𝑗 )}) is a normalization term representing the cardinality of
the partitioned subsets in the neighbor set. The 1-neighbor set N(𝜐𝑡𝑖 ) = {𝜐𝑡 𝑗 | 𝑑 (𝜐𝑡𝑖 , 𝜐𝑡 𝑗 ) ≤ 1} is applied to be
the receptive field of each node 𝜐𝑡𝑖 , as depicted by the blue contour in Fig 3(c). Within the weight function, the
partition function 𝑙𝑡𝑖 : N(𝜐𝑡𝑖 ) → {0, . . . , 𝐾 − 1} can be used under different strategies, while in our work the
distance-partitioning strategy [77] is adopted that divides the 1-neighbor set N(𝜐𝑡𝑖 ) into two subsets, namely
the centered node 𝜐𝑡𝑖 and the remaining neighbor nodes 𝜐𝑡 𝑗 | 𝑑 (𝜐𝑡𝑖 , 𝜐𝑡 𝑗 ) ≤ 1. As a result, we have 𝐾 = 2 subsets
thus 𝑙𝑡𝑖 (𝜐𝑡 𝑗 ) = 𝑑 (𝜐𝑡𝑖 , 𝜐𝑡 𝑗 ). By using the distance-partitioning strategy, 𝑍𝑡𝑖 (𝜐𝑡 𝑗 ) equals to the number of all the
neighboring nodes 𝜐𝑡 𝑗 within the same neighbor set because they are within the same subset as well.

A.2 Error Analysis with Visualization
To understand the temporal behavior of the two modules in the hierarchical HAR-PBD architecture, a visualized
example of the model performances on the data sequence of one CP participant is shown in Fig 15. The upper two
diagrams are the ground truth and recognition result of the HAR module, respectively. As shown, on this long
data sequence, our HAR GC-LSTM using CFCC loss achieves good performances without any pre-localization
and -segmentation of the AoIs. The lower five diagrams are the ground truth and results of the PBD module
achieved by the four different methods, respectively.
In the HAR result (upper part of Fig 15), the errors are found to be: i) misclassification of one-leg-stand as

transition activity (red rectangles on the left); ii) misclassification of transition activities as reach-forward and

Fig. 15. An example of the ground truth and results of HAR and PBD modules for the data of a CP participant. The upper
diagram is showing the ground truth of activity class and the recognition result by HAR GC-LSTM with CFCC loss. At the
lower diagram, the first row is presenting the ground truth for PBD. ‘M1’ to ‘M4’ are respectively the detection result of i)
PBD GC-LSTM; ii) PBD GC-LSTM with CFCC loss; iii) hierarchical HAR-PBD architecture, and iv) hierarchical HAR-PBD
architecture with CFCC loss.
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bend-down (red rectangles in the middle); iii) misclassification of bend-down as stand-to-sit (red rectangle in the
right). We notice that most misclassified activities were possibly due to their similarity in execution given the use
of protective behavior by this CP participant. For instance, the analysis of the on-site recorded video shows that
the participant was unable/unwilling to raise the leg up during one-leg-stand, which is similar to the transition
activity of standing still. During bend-down, the participant was not to bend the trunk but the leg and reached
both arms to the ground, which is similar to the activity of stand-to-sit.

We now compare the four PBD approaches (see M1-M4 in the lower part of Fig 15). Without the activity-class
information and CFCC loss, the baseline PBD GC-LSTM (M1) misclassified most frames as the majority class of
non-protective behavior, which takes up around 78.91% in the training data. More protective behavior frames are
correctly detected by using CFCC loss (M2), possibly owing to its ability to drive the model to focus more on the
less-represented class i.e. the protective behavior class in our case. For this CP participant, M3 is shown to be
more effective than M2 in terms of PBD during stand-to-sit, sit-to-stand, and bend-down. This could be mainly
owed to the activity-type information on these frames provided by the HAR module. The hierarchical HAR-PBD
architecture with CFCC loss (M4) leads to the best result, especially for PBD during one-leg-stand. In the PBD
result of the hierarchical architecture without CFCC loss (M3), the misclassified area marked by a red rectangle
on the right side of the figure seems to be affected by the misclassification of bend-down as stand-to-sit in the
HAR module. Such error is corrected by using CFCC loss (M4), possibly because it forces the model to adaptively
down-weight the frames of majority class i.e. the non-protective behavior class in our case. However, for the
same approach (M4), the error marked by a red rectangle on the left side is likely to have been affected by the
misclassification of one-leg-stand as transition activity by the HAR module.

These results suggest that i) misclassifications by the HAR module have a negative impact on PBD performance;
ii) and this problem could be minimized by addressing the class imbalance with CFCC loss in the PBD module.
These support our concept of approaching continuous PBD by addressing the two technical issues together,
namely the contextual information of activity types and the imbalanced presence of protective behavior during
training.
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