
81

Leveraging Activity Recognition to Enable Protective Behavior
Detection in Continuous Data

CHONGYANG WANG, University College London, United Kingdom
YUAN GAO, Shenzhen Institute of Artificial Intelligence and Robotics for Society, China
AKHIL MATHUR, Nokia Bell Labs, United Kingdom
AMANDA C. DE C. WILLIAMS, University College London, United Kingdom
NICHOLAS D. LANE, University of Cambridge, United Kingdom
NADIA BIANCHI-BERTHOUZE, University College London, United Kingdom

Protective behavior exhibited by people with chronic pain (CP) during physical activities is very informative to understanding
their physical and emotional states. Existing automatic protective behavior detection (PBD) methods rely on pre-segmentation
of activities predefined by users. However, in real life, people perform activities casually. Therefore, where those activities
present difficulties for people with CP, technology-enabled support should be delivered continuously and automatically
adapted to activity type and occurrence of protective behavior. Hence, to facilitate ubiquitous CP management, it becomes
critical to enable accurate PBD over continuous data. In this paper, we propose to integrate human activity recognition
(HAR) with PBD via a novel hierarchical HAR-PBD architecture comprising graph-convolution and long short-term memory
(GC-LSTM) networks, and alleviate class imbalances using a class-balanced focal categorical cross-entropy (CFCC) loss.
Through in-depth evaluation of the approach using a CP patients’ dataset, we show that the leveraging of HAR, GC-LSTM
networks, and CFCC loss leads to clear increase in PBD performance against the baseline (macro F1 score of 0.81 vs. 0.66
and precision-recall area-under-the-curve (PR-AUC) of 0.60 vs. 0.44). We conclude by discussing possible use cases of the
hierarchical architecture in CP management and beyond. We also discuss current limitations and ways forward.
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1 INTRODUCTION
Chronic pain (CP) is a prevalent condition in 30�7% of adults in the US [15]. People with chronic musculoskeletal
pain (a common type of CP) exhibit protective behavior (guarding, stiffness, hesitation, the use of support, and
jerky motion) during physical activity [30], providing important information about their physical state, anxiety
about movement, and ability to manage their condition [5, 70]. In clinical settings, physiotherapists observe
protective behavior and respond with feedback, movement suggestions, and therapeutic interventions [61]. This
tailored support is important to incrementally build patients’ self-efficacy and maintain their engagement in
physical activity [47]. However, such support is expensive and only available to few people with CP. In addition,
behavior in the clinic is a narrow sample of the physical and psychological capabilities required for everyday
physical functioning [8]. Maintaining self-management is hard and people often disengage, thereby losing valued
activities including social involvement [70]. To prevent disengagement, observation and personalized support
need to extend beyond the clinical context [48].
Ubiquitous sensing and computing technology offer new opportunities to provide such support to people

with CP. Patients describe technology capable of protective behavior detection (PBD) as a ‘second pair of eyes’,
increasing their awareness and helping application of pain management strategies learned in the clinic [16].
In [62], patients and physiotherapists discussed how such technology could help patients to better control
activity pacing and breathing when protective behavior is detected. The technology may also, e.g., replicate
physiotherapists’ advice on chair height if the patient has difficulties sitting down or standing up. These studies
also show that awareness of habitual protective behavior can help reduce it (e.g. reminding the person to bend
the trunk as they stand up from a chair). In addition to providing personalized feedback, such technology can be
adopted to evaluate the effect of clinical interventions [65].
The first step in building a ubiquitous technology to help people with CP in their everyday lives is to enable

continuous PBD during diverse functional activities. To date, the focus has been on PBD in specific exercises
where the activity being performed is known in advance. Interesting PBD results are only achieved within
pre-segmented activity instances [73–75]. However, pre-segmentation is not feasible for everyday (functional)
activities. In this paper, we aim to address these problems by approaching continuous PBD with continuous
recognition of the activity (HAR) in process. We propose a novel hierarchical HAR-PBD architecture, where the
activity type when recognized is continuously leveraged to build activity-informed input for concurrent PBD.
To investigate the efficacy of our approach, we use the fully-annotated EmoPain dataset [6]. The dataset

comprises full-body movement data captured from CP and healthy participants during sequences of move-
ments reflecting everyday activities. We refer to these as activities-of-interest (AoIs) since they were chosen
by physiotherapists as particularly demanding for people with CP and likely to trigger protective behavior.
While this dataset was not collected in the wild, participants performed each activity without how-to instruction,
and transitions between AoIs further created noise typical of in-the-wild data collection. During transition
periods, participants could rest according to their needs or enjoy casual movements such as stretching, walking,
and self-preparation. An illustration of a complete activity sequence of one CP participant with the protective
behavior annotation is shown in Fig 1. Evaluation shows that the activity information noticeably improves the
PBD performance in such continuous data, achieving macro F1 score of 0.73 and PR-AUC of 0.52 in comparison
with the baseline method without such information (macro F1 score of 0.66 and PR-AUC of 0.44). By alleviating
class imbalances with a class-balanced focal categorical cross-entropy (CFCC) loss [9, 38], PBD performance is
further improved, achieving macro F1 score of 0.81 and PR-AUC of 0.60. Our contributions are four-fold:

• For the first time, continuous detection of protective behavior is studied using full data sequences of CP
patients. Previously, continuous PBD was only established on pre-segmented activity instances.
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Fig. 1. An example of the full data sequence from a CP participant, comprising AoIs and transitions. Lines are red, green,
and blue for the x, y, and z coordinates data, respectively. Protective behavior labels (majority-voted) are shown below the
sequence.

� A novel hierarchical HAR-PBD architecture is designed to leverage activity recognition to enable detection
of protective behavior (i.e., movement behavior driven by emotional variables) in continuous data sequences.
Protective behavior was investigated in the past without leveraging its activity background.

� Graph convolution (GC) [32] and long short-term memory (LSTM) [23] layers are combined to model the
body-worn inertial measurement units (IMUs) data for PBD, while in the past only convolutional neural
networks (CNNs) [35] and LSTMs were applied. Although the concept of combining GC and LSTM exists
in computer vision-based studies, it is adopted for the �rst time to show advantage of graph representation
in the context of emotional behavior across activities. A loss function referred to as CFCC loss is also
employed to alleviate class imbalances of continuous data.

� Comprehensive experiments and analyses using data collected from both CP and healthy participants.
Various training strategies of the proposed hierarchical architecture are explored, and an analysis of
simulating fewer IMUs demonstrates the applicability and e�cacy of our method on smaller sensor sets.

2 BACKGROUND, MOTIVATIONS AND RELATED WORKS
Our proposed hierarchical HAR-PBD architecture comprises two main modules: one for activity recognition
and another for PBD. Here we summarize the literature related to pain-, fear-, and anxiety-induced movement
behavior detection and HAR, while reveal the motivations of this work.

2.1 A�ective Movement Behavior Detection
Pain, fear, and anxiety are expressed not only by the face, but also by altered body movements [10, 64]. The
automatic detection of a�ective bodily expressions is a growing area of research in the a�ective computing
community [4, 27]. While bodily expressions of emotion were previously studied in isolation, the focus is now on
real-life data. Due to the technical challenges, most studies still use static situations (e.g. during a consultation
interview with a therapist [25]) or the type of activity is constant throughout (e.g. the detection of pain and
anxiety in game-based physical rehabilitation [53, 71]). Bodily expression is also used to inform healthcare
applications, e.g. for detection of depression [25], oral hygiene [3], and perinatal assessment for stroke [18].
Typically, these scenarios only require the tracking of few body parts without �ne-grained analysis of full-body
movement.

Automatic detection of continuous a�ective behavior across di�erent daily activities is still rare. For example,
[46] explored the detection of bodily expressions of re�ective thinking in the context of diverse full-body
mathematical games. While this study developed activity-independent models over continuous data sequences,
their proposed LSTM-based architecture needs to be trained on pre-segmented a�ective events (e.g. when the
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child expresses the states of interest vs. other states). Recently, studies very relevant to ours have attempted to
detect protective behavior across di�erent activities. On the EmoPain dataset [6], researchers have shown that the
use of LSTM-based architectures facilitates activity-independent PBD with improved performances. Interesting
results are seen in [74] and [75], where the stacked-LSTM network and body attention network (BANet) were
proposed to conduct traversal and local processing of body movement data, respectively. Although the model is
activity-independent and functions across di�erent activity types, continuous detection was constrained only
within pre-segmented AoIs. The relationship between the type of activity and protective behavior is not leveraged
in the modeling. The attention mechanism used in BANet only focuses on identifying the most relevant body
segments but does not directly leverage such relationship.

As such, how to enable continuous PBD along a sequence of activities remains an open challenge. The high
variability of protective behavior exhibited within the same activity type across people [75] also calls for a better
approach to extract generalized information from the full-body movement data.

2.2 Human Activity Recognition
The modeling of body movement has gone through extensive development in the context of HAR. The majority
of HAR research focuses on classifying the type of activity a person is engaged in by using data from wearable
sensors [1, 12, 20, 22, 41, 44, 51, 80] or skeleton data from visual motion-capture (MoCap) systems [59, 77]. The
preference for wearable sensors vs. visual systems rests on the limits to mobility imposed by the application.

HAR with vision- and sensor-based data has evolved quickly in the past few years, especially for the perspective
of data processing strategies. Initially, data was processed in a traversal manner, where acceleration, orientation,
or joint coordinates were treated as temporal multi-dimensional sequences. As a result, e�orts were dedicated
to feature engineering [17, 76] and basic neural networks [20, 22, 41] e.g. LSTM networks [23], to address the
temporal aspects of body movement data. Later, various studies started to exploit the spatial con�guration
of the sensor/joint network. For instance, several data representations considered the relationships between
sensors/joints [29, 36, 81], with network architectures designed to enable local processing of movement dynamics
[13, 19, 39, 40, 44, 75, 80]. Performance improvements achieved by these methods suggest that body con�guration
information is important for activity recognition. More recently, the re-introduction of graph convolution network
(GCN) [14, 45] o�ers a new method for HAR. One reason for the successful use of GCN on skeleton-like movement
data [7, 37, 57� 59, 77, 78] is that the human body can be naturally presented as a non-directed graph. Graph
representation helps a model learn the biomechanical relationships between body segments without imposing
knowledge about speci�c activities of interest. Noticeable improvements are seen on several benchmark datasets
(e.g. NUS RGB+ [56] and Kinetics [28]), achieved by using GCNs.

Whilst the concept of body con�guration is very much leveraged in vision-based HAR systems, enabled by the
full-body MoCap therein, it is not the case for ubiquitous sensor-based HAR or movement behavior detection.
The sensor-based HAR literature has focused on using a small set of sensors to classify activity, with each study
examining speci�c activities [51] or benchmark datasets [52, 54, 63]. Using a small network of sensors also
increases applicability and reduces cost in real-life deployment. However, as in the case of CP rehabilitation,
critical information may not be in the movement of the main body segments involved, but in other body parts
recruited to protect the body [5, 30, 47, 70]. For example, Olugbade et al. [48] show the importance of head
sti�ness to indicate protective behavior during sit-to-stand-to-sit and reach-forward, although head movement is
not needed to perform such activities. Psychology studies in CP point to the importance of assessing activity
quantity as well as movement quality. As a result, using full-body movement data (as in the EmoPain dataset)
rather than a small set of sensors, to detect protective behavior across activities, is based on three arguments:
i) full-body movement data is needed to capture detailed movement behavior of multiple body parts for PBD
across activities; ii) patients and clinicians see bene�ts and opportunities that such sensing technology o�ers, and
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are open to using it [65]; iii) full-body sensing is becoming more convenient as wearable sensors are becoming
smaller and integrated into clothes [26]. Moreover, we evaluate the e�cacy of our method on small sensor sets at
the end of this paper.

The advantage of using GCN in skeleton-based HAR, the need to model a large set of sensors, and high
variability in body con�guration information in PBD all suggest the importance of exploring the use of GCN
in the context of protective behavior. It also brings together research work on HAR and PBD (or in general
emotional movement behavior detection) that have surprisingly evolved separately, despite clearly representing
activity and emotional bodily expressions that co-occur in real life with each altering the other. To the best of our
knowledge, only one paper has investigated the use of GCN in bodily a�ective expressions [7], but considers just
one task (gait) and acted emotional expressions, a much simpler (stereotypical) problem to address. As such, they
explored GCN alone and do not need to address the variety of activity and class imbalances of continuous data.
In this paper, we aim to use the proposed hierarchical architecture to answer the questions: is HAR bene�cial
to PBD in continuous data and how could these two modules be connected? For each module of our proposed
architecture, GC is employed to model the movement data captured by multiple IMUs per timestep. Given the
success of LSTM in capturing temporal patterns of protective behavior [74, 75], LSTM layers are used to model
the temporal dynamics.

3 THE HIERARCHICAL HAR-PBD ARCHITECTURE AND CFCC LOSS
A novel hierarchical architecture combining HAR and PBD modeling is proposed to enable PBD over continuous
data sequences of activities. An overview of this architecture is presented in Fig 2. Both HAR and PBD modules
receive consecutive frames as the input. These are extracted with a sliding-window from the data sequence
collected with 18 IMUs. For HAR module the activity type label is used for training, whereas for PBD the
protective behavior label (absence and presence) is used. In addition, the �rst module (HAR) aims to recognize
the type of activity being performed and pass such information to the second module (PBD) that recognizes
the presence or absence of protective behavior. For our main experiments, the HAR module is pre-trained with
activity labels on the same folds of data during each round of leave-one-subject-out validation (LOSO) used for
PBD. The weight achieving the highest activity recognition accuracy is saved. The HAR module is frozen with

Fig. 2. The proposed hierarchical HAR-PBD architecture, comprising the human activity recognition (HAR) module and
protective behavior detection (PBD) module. By default, using the same data input, the HAR module is pre-trained with
activity labels and frozen during training of the PBD module with behavior labels.
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such pre-trained weight loaded when used in the hierarchical architecture. Therein, the activity classi�cation
output is concatenated with the same original input frame and passed to train and test the PBD module using
labels of protective behavior. We use this frozen (optimized) HAR module to better understand the bene�t of
using the proposed hierarchical HAR-PBD architecture. Further analyses using a non-frozen HAR module are
reported at the end of the paper. To the best of our knowledge, this is the �rst implementation to leverage HAR
to enable another concurrent task on the same data.

Both modules in our proposed architecture use a similar network comprising GC and LSTM layers. The GC
layer is used to model the body con�guration information collected from 18 IMUs. Following its success in recent
vision-based HAR literature, we aim to explore the contribution of GC in PBD given the large variety in protective
behavior exhibited by people with CP when performing each AoI. Meanwhile, LSTM is used to learn the temporal
dynamics across graphs corresponding to the body movement across di�erent timesteps, critical for both HAR
and PBD (e.g. hesitation slows down movements, and fear of pain or perceived pain lead to di�erence in timing
of body-part engagement for the same activity).

3.1 The GC-LSTM Network for HAR and PBD Modules
There is a variety of implementations of using GC for skeleton-based movement data. Some have altered the GC
itself to facilitate a spatial-temporal operation [7, 37, 57, 77]. Others connect the GCN and LSTM via extra layers
[59] or integrate GC within the gates of each LSTM unit [58] to enable a recurrent computation across time. The
performance of these approaches �uctuates on vision-based HAR benchmarks [28, 56], and they have never been
applied in the context of emotional bodily behavior across di�erent activities. For both HAR and PBD modules
in our proposed architecture, a network integrating GC and LSTM is used, referred to as HAR/PBD GC-LSTM.
There are three considerations for the design of HAR/PBD GC-LSTM:

� The limited size of the EmoPain dataset in comparison with popular vision-based HAR benchmarks [28, 56]
that have been used to evaluate GCNs, making it di�cult to adopt more complex existing implementations.

� The need to verify if the graph representation is indeed capable of improving PBD, which requires using
GCN as a way to learn data representations and removing unnecessary designs, e.g. embedding GCN into
LSTM.

� The aim to connect the HAR module with the PBD module, which requires the GC-LSTM network to
tolerate the fusion of activity information and movement data at input level.

In this paper, we focus on a conceptually simple implementation that builds parallel connection between GC
and LSTM layers as the basic component in our architecture. Such design is helpful to verify the advantage of
using a graph representation to model data from multiple IMUs in the context of HAR and PBD. Explorations of
GC-LSTM variants may further improve performances, but are out of the scope of this paper. We leave these to
future work.

3.1.1 Graph Input.A wearable motion capture suit named MetaMotion IGS-190 [42] comprising 18 IMUs was
used for the data collection. As provided in the EmoPain dataset [6], at each timestep, 3D coordinates of 22 body
joints were calculated from the raw data stored in a Biovision Hierarchy (BVH) format. Within the BVH �le, the
metadata includes the skeleton proportion of the participant (e.g. the length of limbs) and position on the body
that each sensor was attached to (Fig 3(a)). Using a Matlab MoCap toolbox [34], the approximate position of
22 body joints in the 3D space was estimated based on the metadata, the gyroscope, and accelerometer data. It
is important to note that such transformation brings no prior knowledge of speci�c activities. It only re�ects
the de�nite position of each body joint in the 3D space. An illustration of such transformation from IMUs to
positional triplets of body joints is shown in Fig 3(b).
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Fig. 3. Illustrations of a) the placement of 18 IMUs, b) the calculation of 22 sets of 3D joint coordinates, and c) the built
graph input at a single timestep, where each node represents a human body joint. The blue contour marks the neighbor set
(receptive field) of the centered node in green.

3.1.2 Graph Notation.A body-like graph is built to arrange each of the22 joints to be a node connected
naturally in the graph to the other joints, as shown in Fig 3(c). We denote the graph asG = ¹+• � º, with a
node set+ fC•8g = fhC8j C= 1• ”””•);8= 1• ”””• #g representing the# nodes of a graph at timestepCwithin a
graph sequence of length) , and an edge set� representing the edges connecting the nodes in this graph.
Since in this work independent LSTM layers are used to learn the temporal dynamics across graphs at di�erent
timesteps, the inter-skeleton edge (usually represents the temporal dynamics) connecting consecutive graphs is
not leveraged. Therefore, only the intra-skeleton edge (representing the connection of body joints) is considered
with � f8• 9g =

� �
hC8•hC 9

�
j ¹8• 9º 2 �

	
, where� is the set of naturally connected nodes (joints) of the human body

graph. An adjacency matrixA 2 f 0•1g# � # is used to identify the edge� between nodes, where� 8•9= 1 for the
connected8-th and 9-th nodes, and0 for disconnected ones.A stays the same for all the tasks in this work. In
other words, the basic con�guration of a graph is independent of time and participants, while the relationship
between di�erent body parts in di�erent activities is learned during training. The identity matrix isI# 2 f 1g# � # ,
a diagonal matrix that represents the self-connection of each node in the graph. With the adjacency matrixA and
identity matrix I# , the body con�guration is represented by matrices and can be processed by neural networks.
The feature of each node in a graph at timestepCis stored in a feature matrixXG

C 2 R# � 3. The raw feature of each
node is the coordinates of the respective body joint, denoted asXG

hC8 = »GC8•~C8• IC8¼. The neighbor set of a node
hC8is denoted asN ¹hC8º =

�
hC 9j 3¹hC8•hC 9º � �

	
, with distance function3¹hC8•hC 9º accounting for the number of

edges in the shortest path traveling fromhC8to hC 9and threshold� de�ning the size of the neighbor set. Following
previous studies using GCNs for action analysis [7, 37, 57� 59, 77], we set� = 1 to adopt the1-neighbor set of
each node.

3.1.3 Graph Convolution.Basically, a GC comprises two parts, one de�nes the way to sample data from the
input graph and the other concerns assigning learnable weight to the sampled data. It should be noted that a
higher-level knowledge about the subset of body parts relevant to speci�c activities is not manually provided in
the network. Therefore, only low-level rules like sampling and weighting are de�ned in the GC, which allows
the network to develop its own understanding about the body movement. In our case, the GC needs to conduct
sampling on the full-body graph comprising22nodes.
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Using the adjacency matrixA and identity matrixI# , we follow the forward-passing formula presented in [32]
to implement the GC used in this work as

f ��
>DC= �̂ � 1

2 Â�̂ � 1
2 f ��

8= W• (1)

whereÂ = A ¸ I# represents the inter- and self-connection of each node, and�̂ 88=
Í

9Â8 9is a diagonal degree

matrix of Â. Since�̂ is a positive diagonal matrix, the entries of its reciprocal square root�̂ � 1
2 are the reciprocals

of the positive square roots of the respective entries of�̂ . Each diagonal value in the degree matrix�̂ counts the
number of edges connecting the respective node in the graph described byÂ. Such transformation fromA to Â is
in accord with our choice of distance-partitioning [77], where each neighbor set is divided into two subsets for
weight assignment, namely the center node (I# ) and the neighbor nodes (A). f ��

8= is the input feature matrix, and
f ��
8= = XG

C at the �rst layer of input level.W is the layer-wise weight matrix. We refer readers to the appendix
section for a more detailed description about GC.

3.1.4 Connecting Graph Convolution with LSTM.For each module, the input to a single unit of the �rst LSTM
layer is the concatenation of the GC output from all the nodes in the graphG at timestepC, denoted byf ��

>DC¹X
G
C º =

»5��
>DC¹hC1º• ” ” ” • 5��>DC¹hC#º¼) . For the adopted forward-processing LSTM layer, the computation at each LSTM unit

is repeated to process the information across graphs from the �rst timestep to the last. Such conceptually-simple
design involving the GC only as a way to learn representations enables us to empirically study its impact on PBD
performances. In comparison, another study embedded GC within the LSTM unit [58]. While this may improve the
performance, it becomes more di�cult to di�erentiate the advantage of each architecture component. Additionally,
some works proposed to improve performances by using extra computational blocks (e.g. fully-connected layers
or attention mechanisms [59, 79]) between GC and LSTM layers, which in turn add more trainable parameters to
the network that could lead to over-�tting on smaller datasets like ours.

3.2 Hierarchical Connection of HAR and PBD Modules
Up until this point, the GC-LSTM network used in each module of our proposed architecture has been de�ned.
Here, we describe how to connect HAR and PBD modules. In each module, a fully-connected softmax layer is
added to the GC-LSTM network for classi�cation. Let the probability towards each class of the current input frame
to beP = »?1• ” ” ” • ? ¼with  denoting the number of classes, and the one-hot prediction to beY.  is 6, including
the 5 AoIs and transition activity class for the HAR module, and is2 for protective and non-protective behavior of
the PBD module. In our proposed architecture, to provide activity-informed input from HAR to PBD, a node-wise
concatenation is used where the predicted activity labelY� �' is added to the input matrixXG

hC8 = »GC8•~C8• IC8¼of
each node of the graph input for PBD (see Fig 2). Namely, for the PBD module, activity-informed input feature
matrix at a nodehC8of a single graph isXG•%��

hC8 = »XG
hC8•Y

� �' ¼. Since the raw graph input fed to the PBD module
is joined by the output of the HAR module, we call such ahierarchical connection between the two.

3.3 Addressing Class Imbalances during Training with CFCC Loss
A problem with datasets simulating real-life situations is class imbalance (e.g. datasets for HAR [52, 54, 63]). In
the case of the EmoPain dataset, protective behavior is sparsely spread within the AoIs of each data sequence,
while it is generally absent during transition activities (see Fig 1). Speci�cally, on average the AoIs represent
only 31”71%of a participant's data sequence, with the rest being transition activities. Furthermore, on average,
samples labelled as protective behavior represent only21”09%of a patient's data sequence, with the rest labelled
as non-protective. Typical approaches used to address class imbalance include: i) data re-sampling for each class,
where samples are either duplicated from the less-represented class or randomly sampled from the majority
class [11]; ii) loss re-weighting, e.g. setting higher weights for the less-represented class and lower weights for
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the majority class [24]. Unfortunately, these require interferences with data samples that could also harm the
training of a model [9].

In our work, we propose to use a loss function that directly alleviates class imbalance during training. Normally,
for the supervised learning of our modules, the following categorical cross-entropy loss (CCE) [35] is used

L categorical¹P•Yº = � Y log ¹Pº • (2)

whereP = »?1• ” ” ” • ? ¼is the predicted probability distribution of an input frame over the classes, andY is the
respective one-hot categorical ground truth label withY¹: º = 1only for the ground truth class: . During training,
the loss computed for each frame is added up to be the total loss for the model to reduce. Such function tends to
bias the model to put more attention on decreasing the loss in the majority class and ignores the (mis)classi�cation
of the less-represented classes (e.g. the AoI classes in the HAR task or the protective behavior class in the PBD
task).

To address this problem, we took inspiration from the research on automatic object detection. In object
detection domain, a binary-class imbalance exists given the smaller area covered by the object-of-interest and the
larger objectless background. Two main approaches proposed in this direction are the focal loss [38] and the
class-balanced term [9]. Based on binary cross-entropy loss [35], focal loss applies asample-wise factor function
adjusting the loss weight for a sample based on its classi�cation di�culty (judged by the predicted probability
towards the ground truth class). The focal loss (FL) together with binary cross-entropy loss (CE) can be written as

L FL¹?•~º = ¹1 � ?GTºWL binary¹?•~º = �¹ 1 � ?GTºW¹~ log¹?º ¸ ¹ 1 � ~º log¹1 � ?ºº• (3)

where? is the predicted probability towards the positive class of the current data sample,~ is the binary ground
truth indicator with 1 for the positive class and0 for the negative class,?�) = ~?¸ ¹ 1� ~º¹1� ?º is the predicted
probability towards the ground truth class. As we can see, the factor¹1 � ?�) ºWwith tunable hyper-parameter
W� 0 is added to the original binary cross-entropy loss. The intuition is to reduce the loss computed from data
samples that are well-classi�ed, while the threshold for judging this needs to be tuned given di�erent datasets
and is controlled byW. The increase ofWwill reduce the threshold, then data samples with comparatively lower
classi�cation probabilities toward the ground truth class would be treated as the well-classi�ed.

In [9], the authors further revised the vanilla cross-entropy loss by adding aclass-wise loss weight to each
class based on the so-called e�ective number of samples within it. For class2, the e�ective number of samples is
denoted as� =2 = 1� V=2

1� V , with a hyper-parameterV 2 »0•1º controlling how fast the e�ective samples number� =2

grows when the actual number of samples=2 increases. The class-balanced term is the reciprocal of� =2 , written
as

1
� =2

=
1 � V

1 � V=2
” (4)

Unlike the binary imbalance caused by the area of object and its useless background, in the HAR module, class
imbalances exist among the6 categories of activity, while in PBD both protective and non-protective classes
share the same importance. Therefore, to adapt the focal loss and class-balanced term to scenarios of HAR and
PBD, we replace the CE with CCE and combine the Equation 2-4 as

L CFCC¹P•Yº = �
1 � V

1 � V=:
¹1 � YPºWYlog¹Pº• (5)

where=: is the number of frames of the ground truth class: for the current input frame. This revised function,
referred to asClass-balancedFocalCategoricalCross-entropy (CFCC) loss, will be used in our study. To the
best of our knowledge, this is the �rst time for such a combination to be used for the computation of multi-class
categorical cross-entropy loss in HAR and PBD. With CFCC loss, we aim to alleviate class imbalances during
training and also to understand its impact in comparison with the other component of our architecture.
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