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Abstract—Chronic pain is a prevalent condition that affects
everyday life of people around the world. Protective behaviors
(strategies that are naturally but unhelpfully adopted by people
with chronic pain to cope with fear of pain in executing harmless
everyday movements) can lead to further disability over time
if not recognized and addressed appropriately. In this paper,
we build on previous work on unimodal, activity-independent,
time-continuous protective behavior detection (PBD) by focusing
on the fusion of muscle activity and body movement modalities
for characterizing both protective behavior and its physical
activity context. We explore different fusion strategies based
on consideration of the manner in which protective behavior
influences muscle activity and overt body movement as well as
the relationship between the two modalities. We evaluate the
various strategies on the multimodal EmoPain dataset containing
data from people with and without chronic pain engaged in
physical activities that reflect everyday challenges for those with
chronic pain. Our results show that a central (model-level) fusion
approach leads to better PBD performance than input- and
decision-level fusions, or unimodal approaches. We also show
that additional use of attention mechanism, typifying shifts in
attention characteristic of protective behavior, further improves
the sensitivity of the model, i.e. detection of the positive class
(which is the minority class). We analyze these results and suggest
that fusion in modelling a motor condition should consider how
emotional responses (fear of movement and pain in this case)
triggered by a condition affect each of the given modalities and
hence their contributions to the modelling task.

Index Terms—chronic pain, deep learning, multimodal fusion

I. INTRODUCTION

Chronic pain, which is defined as pain that persists after
the healing period of an injury or appears in the absence of an
injury [1], is a common global health problem among adults
[2]. Caused by changes in the nervous system, negative emo-
tions and impaired movements due to persistent interference
of pain signals are associated with chronic pain. People with
musculoskeletal chronic pain tend to exhibit protective behav-
iors (e.g., guarding and hesitation during movement), which
are unhelpful strategies used to cope with challenging but
harmless everyday physical activities [1]. Unfortunately, such
behavior can lead to increased pain, increased difficulty in per-
forming functional activity, negative emotions, and withdrawal
from valued physical activities [3]. Physiotherapists watch
for protective behaviors in their observation of movement,
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to tailor feedback to the individual patient and personalize
management strategies prescribed to help the patient reduce
the use of these behaviors [4]. However, such support in
clinical settings does not easily translate to daily life [5] and
is particularly unavailable in situ, i.e. at the moment when the
patient encounters the challenge (e.g., while bending down
to load the washing machine). Automated and continuous
detection of protective behavior (hereafter referred to as PBD
for ’protective behavior detection’) offers an opportunity to
deliver real-time personalized support.

There are overt protective behaviors, such as minimal trunk
flexion or the use of support in trunk lifting [4], that can be
captured using sensors which track movement kinematics (e.g.
motion capture, MoCap). These behaviors can be further evi-
dent in muscle activity patterns captured by electromyography
(EMG), e.g., low activation of lower back muscles in minimal
trunk flexion, activation of upper back muscles in the use of
the arms for support. However, there are muscle activation
behaviors that are not well reflected in overt body movement
[7] [8]. Various studies [9]–[11] for example show high acti-
vation of muscles not (or no longer) involved in the movement
being performed, e.g., lower back muscles during walking
or at the end of trunk flexion/extension. Hence, although
intuitive in movements of healthy people, relationship between
movement kinematics and muscle activity can be complex for
movements of people with chronic pain and strongly related
to emotional response. First, people with chronic pain adopt
a variety of protective behavior strategies that are dictated
by their (unhelpful) perception of danger in movement. In
addition, protective behavior embodies a continuous shift in
attention between different body parts across specific phases
of an activity, with the tendency to avoid the use of those
perceived as at risk and instead recruiting others perceived as
safe for completing the movement [12], [13]. Such strategies
actually make the movement awkward and harder to execute.
To add to this complexity, the part of the body they perceive
in danger or safe to use often depends on their perception of
the body rather than real physical capabilities [12].

While the number of studies on PBD has increased in recent
years, fusion (of the two main modalities that characterize
protective behavior, i.e. muscle activity and overt body move-
ment) has not been well investigated. Work has focused on
simple input-level fusion (i.e. concatenation of input data),
late fusion or unimodal techniques [6] not considering how
these two modalities are interactively and separately influenced
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by underlying affect especially anxiety about pain. Our work
builds on the Hierarchical HAR-PBD architecture of [14] that
shows advantage in leveraging the graphical representation of
kinematic body movement data in the form of anatomical joint
positions. The Hierarchical HAR-PBD architecture further
integrates activity context in PBD to be able to perform
activity-independent time-continuous PBD. However, while
the PBD performances obtained with the model of [14] are
an improvement on prior state of the art [6], [13], the model
uses only overt body movement data (based on motion capture)
and does not leverage muscle activity information. Thus, based
on an understanding of chronic pain behavior, we make the
following novel contributions to the area of PBD in our work:

1) A new architecture named Central Fusion with Attention
(CFAT) that pushes the state-of-the-art performance in
PBD based on fusion of multiple modalities; first, CFAT
extends the architecture proposed in [14] by introducing
multimodality using central fusion and additionally in-
corporating an attention mechanism; second, EMG data
is for the first time represented within a graph structure
in the modelling of PBD behavior, and our findings
suggest that such structure is capable of capturing spatial
relations between muscle groups;

2) With in-depth analyses of the CFAT model and com-
parison with other fusion strategies, we additionally
explore how the use of EMG data can facilitate or
hinder automatic detection of the activity context for
optimization of PBD performance.

II. RELATED WORKS

A. Protective Behavior Detection (PBD)
Early approaches to PBD and related pain-behavior, e.g.

[15] [4] used traditional machine learning models (e.g., Ran-
dom Forests) and feature engineering. These studies used
both kinematic movement and muscle activity data. While
these studies were the critical starting point in PBD, they
were limited by their use of separately trained models for
different activity types. They were additionally limited in their
exploration of the fusion of the two modalities as they simply
applied late fusion or input-level (i.e. early) fusion based on
concatenation of hand-crafted features from the sensor data.

More recently, [6] showed how the use of recurrent neural
networks, with Long Short-Term Memory (LSTM) units in
particular, can enable activity-independent PBD (i.e. a single
PBD model that generalizes to multiple activity types) based
on sensor data directly. Their best performance (macro F1
= 0.82) was based on a Stacked-LSTM network that used
motion capture and EMG data with early fusion. The main
limitation of their model is that it requires pre-segmentation
of the body movement data into individual activity types, an
approach that is not suitable for real-time detection of PBD
where movements or activities performed are unlabeled.

Labels describing the activity context are very relevant
for PBD. Indeed, how guarding (one category of protective
behavior) is performed differs between sit-to-stand, stand-to-
sit, and bending activities. In fact, determination of whether

a given behavior is protective requires an idea of what the
activity/movement that the person intends to perform is. It
is thus important to investigate the application of recognition
of the activity context to PBD. Human activity recognition
(HAR) is a well-established area of research (e.g., [16]–[18])
but unfortunately minimally investigated in the context of
pain-related affective processes which, as discussed in the
introduction, make movement highly variable.

Recently, [14] proposed a Hierarchical HAR-PBD architec-
ture comprising HAR and PBD modules built with Graph
Convolution Network (GCN) and LSTM networks. Their
aim was time-continuous (i.e. no pre-segmentation), activity-
independent PBD. In either module, LSTM layers encode tem-
poral dynamics of features passed from GCN layers. The GCN
strongly captures the relationship between anatomical joints
because of their natural graphical representation. The findings
in [14] further showed that PBD performance improved when
HAR was incorporated: from a F1 score of 0.71 to 0.81.
However, their HAR and PBD modules use only MoCap data
as input (the PBD module additionally takes in the output of
the HAR module for contextualization of the MoCap input).
Studies such as [6], [19] highlight the value of PBD based
on both overt body movement and muscle activity data. Thus,
the question of how EMG data should be integrated in the
Hierarchical HAR-PBD architecture is pertinent, especially
given its biomechanical difference with MoCap data. It is
additionally valuable to explore whether EMG data will be
informative for both HAR and PBD modules.

B. Attention Mechanism in HAR and PBD

Recent studies in related areas, e.g., HAR based on body
movement data, have explored use of the attention mechanism.
In [20], attention was used in an LSTM-based architecture
to weight input data from multiple sensors at each single
timestep as well as weighting the temporal sequence at the
LSTM’s output layer. This model achieved better performance
compared with other previous models. Another notable ap-
proach is the model by Cui et al. [21] which captures long-
term dependencies using attention embedded in a bidirectional
LSTM structure. Another relevant model was introduced by
Islam et al. in [22]. It is a hierarchical architecture that at the
lower level has multi-head self-attention on spatio-temporal
features for each of the modalities. A novel attention mecha-
nism was additionally applied to fuse the multimodal output
at an upper layer. Their algorithm obtained high accuracies
of 95.12% and 97.45% respectively on two benchmark HAR
datasets and F1 score of 81.52% on a third. In [23], they
further proposed a model that is based on graph networks.
Cross-modal graphical attention was used to capture cross-
modal interactions and relations. This approach outperformed
the previous multimodal HAR methods.

While the studies above suggest the efficacy of the attention
mechanism, PBD works on a different timescale of model
reasoning [14] and the size of the available dataset is much
smaller than benchmark datasets used in HAR. The latter is
because of the difficulties of capturing spontaneous affective



Fig. 1. An overview of the CFAT model. Time-continuous input data (MoCap and EMG data) is segmented with a sliding window. Both
input modalities are represented in the form of graphs. (It is possible to use a vanilla CF block in the HAR module instead of a CFAT block,
as our findings in Table I show that both fusion strategies for the HAR have similar effect on the PBD performance). A CF block differs
from a CFAT in that where self-attention mechanism is used in the CFAT (see Equation 5), an fully connected layer is instead used in the
(vanilla) CF (see Equation 1). Both CF and CFAT integrate hidden states of the GCNs for the two modalities.

experiences [24]. Meanwhile, attention has only been explored
in unimodal PBD: [13] explored attention in fusing input
from multiple anatomical joints (MoCap data) and further
integrating data from multiple timesteps. The model outper-
formed previous models with F1 score of 0.84. However, the
work considers only MoCap data and works on pre-segmented
activity instances rather than on continuous data as needed
for deployment. In this paper, we address these limitations
by proposing a novel central fusion strategy with attention
(referred to as CFAT) based on both MoCap and EMG data.
The proposed method builds on the unimodal Hierarchical
HAR-PBD model of [14] by integrating fusion and attention
mechanisms informed by understanding of protective behavior.

III. METHODOLOGY

In this section, we describe the unimodal Hierarchical HAR-
PBD (baseline model), our proposed multimodal fusion (CFAT
Model), and two other fusion methods for comparison (Early
and Late Fusion Models). Our implementation of the four
new models can be found in: https://github.com/EnTimeMent/
Hierarchical HAR-PBD. The backbone, GCN-cum-LSTM,
used for encoding features from the two modalities is based
on the findings of [14] on the baseline model.

A. Baseline Model (Mocap data only)

The baseline model, i.e. the Hierarchical HAR-PBD archi-
tecture of [14], is a unimodal model that comprises an HAR
module which takes MoCap data as input and a PBD module
which uses a concatenation of the MoCap data and the output
of the HAR module as input. Both the HAR and PBD modules
are based on a GCN followed by an LSTM network. Thus,

the MoCap data at each timestep of the input is represented
as a non-directional graph with Nm nodes corresponding to
the anatomical joints in the data and with an adjacency matrix
corresponding to the natural human body configuration. The
LSTM then takes in the graphical convolution outputs across
all timesteps and the computation at each LSTM unit in the
sequence is propagated to the next timestep until the last in the
sequence. The LSTM is finally followed by fully-connected
layers that are used to make HAR or PBD class predictions.

B. Central Fusion with Attention (CFAT) Model

Our proposed architecture is illustrated in Figure 1. Early fu-
sion of the MoCap and EMG modalities does not consider the
biomechanical difference (due to pain and fear of movement)
between the modalities and late fusion would not leverage the
temporal relationship between them. The novelty of our CFAT
approach is that it addresses these issues with weighted fusion
in the middle of the GCN for each of the HAR and PBD
modules. The weighted fusion is implemented as a central
network based on self-attention layers [25] (Equation 5) which
take input from each layer of both the MoCap and EMG GCNs
and has residual connections in its output layer. The vanilla
Central Fusion (CF) model has only fully connected layers
without attention in its central network (Equation 1). These
components are described in detail below:

MoCap & EMG GCNs. We use the MoCap GCN of the
Baseline Model as the MoCap GCN for our CFAT Model.
For the EMG GCN, we treat each EMG channel (i.e. each
muscle group) as a node and so each GCN processes a graph
consisting of Ne nodes, where Ne is the number of EMG
channels. An illustration of this EMG graph is shown in Figure



(a) (b) (c)

Fig. 2. (a) Our stand-alone EMG graph with 4 nodes representing left
and right lumbar paraspinal muscles (1 and 2) and upper trapezius
muscles (3 and 4); (b) our combined MoCap and EMG graph (the
added EMG nodes are in pink); (c) MoCap graph of the baseline
model. The illustration is based on the EmoPain dataset.

2(a) where the adjacency of the EMG nodes (right and left
upper and lower back muscles) is set according to their lateral
and vertical spatial relations on the body. Although we assume
4 EMG nodes in our illustration (based on the dataset used in
this paper), our method allows for any number of EMG nodes.

Central Fusion. We fuse the outputs from the hidden layers
of the MoCap and EMG GCNs in a central network (see Figure
2(b)). At layers i, the output Hi

C is computed as:

Hi
C = σ(w(Hi−1

C + concat(σ(w1H
i
M1

), σ(w2H
i
M2

)))),
(1)

where Hi−1
C is the output of the previous central layer and

Hi−1
C = 0 for i = 1; w, w1 and w2 are learnable weight

matrices; Hi
M1

and Hi
M2

are the hidden representations at
layers i of the modality 1 (MoCap) and modality 2 (EMG)
GCNs respectively; σ is the rectified linear activation function.

Unlike [26] where central fusion is based on addition and
requires identical feature dimension across modalities, we
instead use concatenation, which only requires the dimension
of the concatenated axis (channel dimension) to be identical.
Since the feature dimension of the MoCap and the EMG
GCN can be of different lengths, based on [27] we use a 1x1
convolutional kernel to map the feature dimension of each
hidden state to a common length. The dimensionality of the
hidden states for MoCap and EMG GCNs can be described
as (B, τ,Nm, F ) and (B, τ,Ne, F ) respectively, where τ = 1
since each GCN only processes the data from one timestep
at a time, B is the batch size, and F is the common feature
dimension. In our central fusion, we concatenated these two
modalities along the channel dimension (the third axis), which
represents the number of nodes in each modality graph. The
dimension of the concatenation is thus (B, τ,Nm + Ne, F ).
Further, inspired by [28], we add a residual connection for the
final layer of the central network such that:

Ĥoutput
C = Houtput

C +H1
C. (2)

Central Fusion with Self-Attention. As discussed in Sec-
tion II, use of attention mechanism enables weighting of
features of the anatomical joints and muscles according to their
relevance in each specific phase of a movement. In addition,
we expect attention mechanism to possibly capture attention

shifts evident in limited coordination between anatomical
joints in movement execution by people with chronic pain
and attempt to protect body parts perceived in danger. A
key rationale in applying this method is to characterize the
importance and influence of each channel of each modality
in PBD. We expect protective behavior strategies adopted by
various people on the basis of their perception of what their
body can do and what is dangerous will have different effect
across channels.

In this work, we implement a single-head attention mecha-
nism based on the transformer model of [25] for central fusion.
Consider query Qt, key Kt, and value Vt matrices for the
attention submodule at timestep t extracted from the interme-
diate output Hi∗

C of the central layer i, i.e. Qt = Hi∗

CWQ,
Kt = Hi∗

CWK, and Vt = Hi∗

CWV, where WQ, WK

and WV are learnable matrices derived by implementing 1x1
convolution. The intermediate is computed as:

Hi∗

C = Hi−1
C + concat(σ(w1H

i
M1

), σ(w2H
i
M2

)). (3)

The output of this layer after applying attention is:

Att(Hi∗

C) = softmax(
QtK

T
t√

dk
) ·Vi

t,

= softmax(
(Hi∗

CWQ) · (Hi∗

CWK)√
dk

) · (Hi∗

CWV),

(4)
where the factor

√
dk is the dimension of the key and is used

to prevent the small gradient problem for softmax function
when QtK

T
t becomes too large in magnitude [25]. We apply

the softmax along the channel dimension, i.e. the third axis,
whose length is the total number of MoCap and EMG nodes.

Based on Equation 4, the forward equation for the imple-
mentation of self-attention at layer i is computed as:

Ĥi
C = Att(Hi−1

C + concat((σ(w1H
i
M1

), σ(w2H
i
M2

)))).
(5)

C. Early Fusion Model

In order to assess the value of the proposed CFAT archi-
tecture, we implement an early fusion version for comparison.
Rather than simple concatenation of MoCap and EMG fea-
tures, in our early fusion we integrate the EMG data into
the same graph (and GCN) as the MoCap data. Thus, we
extend the MoCap graph of the baseline model by treating
each EMG channel as an additional node leading to a graph
with (Nm + Ne) nodes (see Figure 2b). Each of the 4 EMG
nodes is taken as adjacent to the MoCap joints associated with
the corresponding muscle group. As MoCap and EMG nodes
may have a different number of features per channel, we use
padding with same value to ensure identical feature lengths.

D. Late Fusion Model

For completeness, we also explore late fusion. In our late
fusion, for each of the HAR and PBD modules the MoCap
and EMG graphs are processed separately in parallel GC-
LSTM networks. Each modality subnetwork outputs a pre-
diction score (dimension = (B,C), where C is the number of



classes). The prediction scores from both modalities are then
concatenated and input to a fully-connected layer that makes
the final prediction with softmax activation.

IV. EXPERIMENT SETUP

In this section, we present the dataset and the methods used
to evaluate the 5 models described in the previous section: the
unimodal baseline model, our CFAT model, the CF model (i.e.
CFAT without self-attention), and the Early and Late Fusion
models. We report our evaluation based on accuracy, macro
F1 score, PR-AUC (Precision Recall Area-Under-Curve), PR
curve, and confusion matrix.

A. EmoPain Dataset and Data Preprocessing

The EmoPain dataset [29] is a multimodal dataset used
in pain research to help design chronic pain rehabilitation
technology. It contains sequences of movement data of 18
people with musculoskeletal chronic low back pain and 12
healthy people. The data was captured while they performed
a variety of typical rehabilitation movements that reflect every-
day challenges for people with chronic pain and were selected
by physiotherapists. There were 46 sequences from 30 par-
ticipants in total. Each sequence includes sit-to-stand, stand-
to-sit, reaching forward, bending down, and standing on one
foot (as a way to simulate stair climbing) activities. Transition
movements between these activities were also included in the
dataset. These transition movements include poses that people
engaged in to relax their muscles or rest (e.g., standing still,
or walking). Data was recorded using full-body 3D inertial
measurement units as well as EMG sensors placed on the
lower and upper back. Protective behavior labels in the dataset
were based on annotation by 4 experts who marked the start
and end of segments of each of 6 categories of protective
behaviors.

To prepare the data, we followed the same approach used
in [14]. We used a sliding window of 3 seconds (i.e. 180 sam-
ples/timesteps) with 50% overlapping ratio. These are based
on findings in [6] that show them to be practical for PBD.
Similar to [6], [14], both the HAR and PBD ground truths of
a frame were decided by majority voting. That is, a frame was
labelled as protective if at least 50% of the samples within it
were annotated as protective by at least 2 experts. To manage
the small size (7629 frames of which 5231 from people with
chronic pain, in which 4219 are not PB and 1012 are PB)
of the EmoPain dataset, jittering and cropping were used as
data augmentation [30]. For jittering, we added Gaussian noise
(mean=0, standard deviation=0.05 and 0.1 separately) to the
input. For cropping, random MoCap joints at random timesteps
were set to 0 with selection probabilities of 0.05 and 0.1
separately. After applying the data augmentation methods, the
size of the dataset was five times larger than the original one,
i.e, it increased from 7,629 frames to approximately 38,145
frames. Leave-one-subject-out cross-validation was used for
evaluation and we only used the data for people with chronic
pain in the test set since the healthy participants were all
assumed to exhibit no protective behavior.

B. Implementation Details

For each model, we trained the HAR and PBD modules
simultaneously. We trained for 100 epochs with batch size 150
using an Adam optimizer [31] with a learning rate of 5e−4 and
a decay of 1e−5. Based on preliminary experiments, we set
the GCN (in both the HAR and PBD modules) to three layers
each with 16 units for the MoCap graph and three layers each
with 6 units for the EMG graph. For the LSTM, we used three
layers with 24 units each for all models except the Late Fusion
Model. For the Late Fusion Model, we used three layers each
with 24 units for the Mocap subnetwork and three layers each
with 8 units for the EMG subnetwork.

The class distribution for the HAR and PBD tasks was
skewed since the majority of the original data sequences are
labelled as transition activities (68.29%) and non-protective
(78.91%). We used the CFCC loss introduced in [14] to
address the imbalance. We fixed the parameters of the CFCC
as γ=2 and β=0.9999, where γ and β control the scale with
which the focus of a model is balanced between classes.

V. RESULTS

The aim of our experiments was twofold. First, we sought
to understand if and how the fusion of EMG and MoCap
data leads to improvement in PBD, given the complexity
and large variety of movement strategies (which emerge from
fear of pain) observed during protective behavior. Second, we
investigated if the use of the attention mechanism could lead
to further increase in PBD performance. We report the results
in the following subsections together with statistical analysis.
Given the lack of normality in the data, Friedman tests
followed by post-hoc Wilcoxon comparisons with Bonferroni
corrections (reported in Table I) were used to evaluate the
differences in performances between the various models.

A. Does fusion lead to improvement in PBD performance?

The first five rows of Table I (PBD) show the results of
the unimodal baseline model, 3 fusion approaches explored
(Early, Late, and Central), and use of Central Fusion (CF) in
PBD but not in HAR module. This latter model was explored
to understand if the fusion is of value to both HAR and
PBD modules or if only useful when within the PBD module.
We can see that the CF models (F1=0.89, 0.87 respectively)
reached better PBD performance than the unimodal, and early
and late fusion models (F1=0.83, 0.82, 0.81 respectively). The
use of CF in both the HAR and PBD modules reached also
better performance than CF in PBD module only. The PR-
AUC and PR curve (Figure 3) also reflect these results.

A Friedman test applied to the PBD F1 scores across the
cross-validation folds showed statistically significant differ-
ence in performance for these 5 models, χ2(4) = 22.080,
p < 0.001. Post-hoc analysis with Wilcoxon signed-rank
tests with Bonferroni correction further showed that the PBD
performance for the HAR(CF)PBD(CF) model is significantly
higher than the PBD performances for the unimodal (p =
0.016), and early (p = 0.013) and late fusion (p = 0.013)
models. No significant difference was found with the PBD



TABLE I
RESULTS FOR HUMAN ACTIVITY RECOGNITION (HAR) AND PROTECTIVE BEHAVIOR DETECTION (PBD), WITH P-VALUES FOR POST-HOC WILCOXON

T-TESTS OF DIFFERENCE BETWEEN EACH MODEL (EVERY ROW) AND THE MODEL CORRESPONDING TO +, ++ OR +++ (HIGHLIGHTED IN BOLD).

HAR PBD (note: ∗ = statistical significance at p=0.05)

Model Accuracy Macro F1 Accuracy Macro F1 PR-AUC p-value p-value p-value

vs + vs ++ vs +++

HAR(Mocap) PBD(Mocap) - baseline 0.80 0.68 0.89 0.83 0.73 0.061 0.016∗ —

HAR(Early) PBD(Early) 0.82 0.72 0.88 0.82 0.72 0.052 0.013∗ —

HAR(Late) PBD(Late) 0.81 0.71 0.88 0.81 0.69 0.052 0.013∗ —

HAR(MoCap) PBD(CF) + 0.86 0.74 0.92 0.87 0.83 — no diff 0.014∗

HAR(CF) PBD(CF) ++ 0.83 0.71 0.93 0.89 0.86 no diff — 0.047∗

HAR(CFAT) PBD(CFAT) +++ 0.75 0.57 0.96 0.93 0.94 — — —

HAR(CF) PBD(CFAT) 0.86 0.78 0.95 0.91 0.92 — — no diff

HAR(MoCap) PBD(CFAT) 0.84 0.73 0.96 0.93 0.91 — — no diff

— = no comparison run, no diff = no significance difference. Numbers in bold indicate the best performances.

CF=Central Fusion; CFAT=Central Fusion with Attention; Early and Late = fusion type; Mocap = MoCap data only.

Fig. 3. PBD precision-recall curve of the different models

performance of the model with fusion (CF in this case) in the
PBD module only, suggesting that the fusion of the modalities
may be more important for PBD than for the HAR module as
hypothesized. However, PBD performance difference between
this latter model (i.e. HAR(Mocap)PBD(CF)) and unimodal,
early fusion, and late fusion models only approached signif-
icance (p = 0.061, p = 0.052, p = 0.052 respectively). No
significant difference in PBD performance was found between
the unimodal, and early and late fusion models. We can also
see from the confusion matrices of Figure 4(top) that, with
respect to no-fusion or early/late fusion, HAR(CF)PBD(CF)
leads to clear improvement in the recognition of the less
represented protective behavior class. These results suggest
that the fusion of EMG and MoCap data is valuable for PBD
but especially when using model-level fusion.

B. Does attention mechanism further support PBD?

We additionally compared the PBD performances of
the CFAT model (HAR(CFAT)PBD(CFAT)), the central

fusion model (HAR(Central)PBD(Central)), and the
model with central fusion in the PBD module only
(HAR(Mocap)+PBD(Central)). As rows 5-7 in Table I show,
the CFAT model (F1=0.93) leads to better performance
than the two central fusion models without attention
(F1=0.89, F1=0.87). A Friedman test found that difference
in performance was statistically significant (χ2(2) = 10.871,
p < 0.004). Wilcoxon post-hoc test showed that the PBD
performance for the CFAT model was significantly higher
than the two models using central fusion without attention
(p = 0.014, p = 0.047). This result suggests that the attention
mechanism further contributes to PBD by weighting the
anatomical joints and muscle groups according to their
relevance for each different activity phase. The confusion
matrix for HAR(CFAT)PBD(CFAT) in Figure 4(top) shows
that CFAT leads to clear improvement in the recognition of
the less represented protective behavior class.

C. Do fusion and attention contribute to HAR?
The effects of fusion strategies on HAR can be explored

by analyzing the first five rows of Table I. As can be
seen, HAR(Mocap)PBD(CF) shows better HAR performance
(F1=0.74) than the unimodal, early fusion, late fusion, and
HAR(Mocap)PBD(CF) models (F1=0.68, 0.72. 0.71, 0.71
respectively). However, a Friedman test does not reveal any
significant difference between HAR performance for these
5 models. To understand the usefulness of the attention
mechanism in the HAR module on both PBD and HAR
performances, we considered variations of the CFAT model
where the attention mechanism is incorporated in both the
PBD and HAR modules or just in the PBD module, i.e.
HAR(CFAT/CF/Mocap)PBD(CFAT). The last 4 rows of Table
I show that, although having CFAT in both PBD and HAR
modules leads to the best PBD performance (see also Figure
4(top)), it yields the worst HAR performance (F1=0.57).



Fig. 4. Confusion matrices for HAR (bottom row) and PBD (top row) for the different models. Matrix titles: M=Mocap data only, E=Early
Fusion, L=Late Fusion, CF=Central Fusion, CFAT=Central Fusion with Attention. PBD matrix (top) classes: NP=Non-Protective, P=Protective.
HAR matrix classes: T=Transition, OLS=One-Leg-Stand, RF=Reach-Forward, BD=Bend-Down, SItST=Sit-to-Stand, STtSI=Stand-to-Sit.

HAR(CF)PBD(CFAT) and HAR(Mocap)PBD(CFAT) reach
much better HAR performances: F1=0.86 and 0.84 respec-
tively. The confusion matrices in Figure 4(bottom) show that
this is due to HAR(CFAT)PBD(CFAT)’s poorer discrimination
of standing-on-one-leg and transition activities in particular.
The Friedman test however did not reveal any significant
differences in HAR performances between the 3 models using
CFAT. This suggests that while the inclusion of EMG data and
use of attention in the fusion of the two modalities is very
informative in detecting behavior triggered by fear of pain, it
introduces noise in recognition of the activity context. This
could be due to the weakened relationship between muscle
activation and the activity performed due to altered muscle
recruitment strategies in chronic pain as discussed earlier.

VI. DISCUSSION AND CONCLUSION

We have proposed a novel architecture for PBD. The
architecture extends previous work in [14] by exploring in-
tegration of EMG data using a GCN and through a central
fusion with attention approach. Our approach was informed by
understanding of pain behavior emerging from the literature.

Our findings suggest that the use of MoCap and EMG
data with an appropriate fusion strategy can improve time-
continuous, activity-independent PBD. The finding that only
central and not early or late fusion leads to clear increase in
performance is in line with the literature in chronic pain that
highlights that muscle activity may not be strongly related
to activity being performed because of altered muscle activity
patterns due to fear of pain or possibly as a result of inability to
control those muscles [9]–[11]. The finding that the attention
mechanism also adds to improvement in PBD perhaps does
typify shifts in attention across anatomical segments in people
with chronic pain based on (unhelpful) perception of danger.

The findings in [14] clearly highlight the positive effect of
integrating HAR in PBD, so why does a worse performing
HAR support PBD more than a better performing HAR? In
other words, it shows that an HAR module that is better fitted
to the human-labelled activity ground truth led to reduction
in PBD performance compared to the use of an HAR module
that is trained to enable better PBD performance. The most
likely explanation is that PBD somehow learns to leverage the
knowledge that when a person with chronic pain moves in a
way that is intuitive/natural (and so more easily categorizable
in terms of the action/activity type), they are not behaving
protectively. For example, in the dataset we used, a person
that aims to bend forward but that is only using a minimal
trunk flexion will have bend as the activity ground truth even
though they have only actually done a minimal trunk movement
activity. Forcing the HAR module to match the intended (as
opposed to the executed) activity may be creating confusion or
noise for HAR whereas it provides information that is valuable
in PBD. In our architecture (Figure 1), we leave the choice of
CF or CFAT for the HAR module open. The fusion strategy
selected for the HAR module would depend on whether the
priority is PBD or HAR performance. However, larger datasets
may show benefits of using CFAT for the HAR module, as they
may help realize movement strategy clusters across activity
types.

In conclusion, the mid-level fusion of MoCap and EMG
data with attention introduced in our CFAT architecture pushes
the state-of-the-art in PBD with macro F1 score of 0.93 (PR-
AUC=0.94, accuracy=0.96) on the EmoPain dataset from 0.83
(PR-AUC=0.73, accuracy=0.89). Our CFAT paves the way
for automatic detection of protective behavior in the wild to
provide tailored, real-time support to people with chronic pain
during everyday physical activities that they find challenging.
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