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Figure 1: The Workflow of COMETIC (Cursor Operation Mediated Eye-Tracking Implicit Calibration). The system can be
divided into the interaction phase and the eye-tracking & calibration phase. (A) The cursor appears at the estimated gaze
location when the user activates it. Due to the estimation error, the user refines the cursor position by sliding their thumb.
Upon releasing the thumb, a click is executed at the cursor’s current position. (B) Model 1 is used for eye-tracking, taking the
image sequence as input and outputting the gaze location (cursor position at activation). Model 2 assists in fine-tuning Model 1
by selecting cursor coordinates from the refinement process that can serve as proxies for gaze location. These selected data
points are then paired with images and used to fine-tune Model 1. In conclusion, our system leverages data implicitly collected
during user interactions to improve eye-tracking accuracy and enhance the interaction experience.
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Abstract
The limited accuracy of eye-tracking on smartphones restricts its
use. Existing RGB-camera-based eye-tracking relies on extensive
datasets, which could be enhanced by continuous fine-tuning using
calibration data implicitly collected from the interaction. In this
context, we propose COMETIC (Cursor Operation Mediated Eye-
Tracking Implicit Calibration), which introduces a cursor-based
interaction and utilizes the inherent correlation between cursor
and eye movement. By filtering valid cursor coordinates as proxies
for the ground truth of gaze and fine-tuning the eye-tracking model
with corresponding images, COMETIC enhances accuracy during
the interaction. Both filtering and fine-tuning use pre-trained mod-
els and could be facilitated using personalized, dynamically updated
data. Results show COMETIC achieves an average eye-tracking er-
ror of 278.3 px (1.60 cm, 2.29°), representing a 27.2% improvement
compared to that without fine-tuning. We found that filtering cur-
sor points whose actual distance to gaze is 150.0 px (0.86 cm) yields
the best eye-tracking results.

CCS Concepts
•Human-centered computing→ Interaction techniques;Ubiq-
uitous andmobile computing systems and tools;Usermodels.
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1 Introduction
Eye tracking has been employed in various fields and demonstrates
significant potential [8, 29, 36, 40, 41]. Current eye-tracking on
smartphones performs with poor accuracy due to two primary rea-
sons: (1) computer vision-based algorithms lack personalization
for individual users[15]; (2) users frequently change their postures
while using smartphones, but eye-tracking calibration typically
occurs only once during the initial setup[1, 13, 49]. Most solutions
address these issues by optimizing computer vision methods, such
as increasing dataset size[22, 30] or introducing more complex
network architectures[65, 78], which partially mitigates personal-
ization issues but fails to resolve posture changes. Other approaches
utilize attention on the screen to optimize eye-tracking results in
real-time[68] but struggle with modeling complex eye movements
in natural, unconstrained environments[32].
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We propose a more effective approach: introducing an intuitive,
low-effort interaction method that simplifies eye behavior through
coordinated hand-eye actions, from which gaze position proxies
can be derived during the interaction. Compared to natural eye
behavior in an unconstrained context, studies have demonstrated a
strong correlation between eye movement and cursor trace during
cursor interactions[42, 43]. Additionally, research shows that in-
tegrating a cursor into smartphone interactions can enhance user
experience[16], especially for single-handed usage. Therefore, we
adopt the cursor as an interactive method to provide information
for eye-tracking calibration.

We introduce COMETIC (Cursor Operation for Mobile Eye-
Tracking Implicit Calibration), a continuous, implicit, and inter-
active eye-tracking calibration method for smartphones. Our ap-
proach integrates a low-effort cursor interaction technique, en-
abling the system to continuously collect and filter valid cursor
coordinates as gaze proxies. Calibration is then achieved by gather-
ing the corresponding image data and fine-tuning the eye-tracking
model.

Our cursor interaction is similar to MAGIC Pointing[70]. When
the interaction is activated, a cursor is triggered at the current
estimated gaze position, and the user refines the cursor’s position by
sliding. Upon releasing the finger, the system registers a click at the
cursor’s location. Since the cursor’s activation position depends on
eye-tracking, the interaction experience improves as eye-tracking
accuracy is enhanced.

We conducted a data collection experiment using our cursor
interaction method. Analyzing the data reveals a strong correla-
tion between eye movement and cursor motion, manifested in two
specific patterns: (1) the distance between the gaze and cursor de-
creases progressively over time, and (2) the gaze tends to “follow”
the movement of the cursor. This provides support for extracting
effective coordinates from the cursor trajectory and using them as
gaze position proxies for the online fine-tuning of the eye-tracking
model.

Our approach involves two deep neural network models. Model 1
takes image sequences as input and outputs gaze position sequences.
Model 2 processes the cursor coordinate sequence and generates
labels indicating whether each cursor coordinate can be a proxy for
gaze position. Since both the cursor and the image contain valuable
gaze information, leveraging transfer learning to share knowledge
between the two tasks could provide additional advantages [11, 66].
Specifically, Model 2 not only takes the cursor coordinate sequence
as input but also incorporates the latent features extracted from
the video in Model 1.

In practical use, pre-trained Model 1 and Model 2 are loaded at
the start. As the user interacts, the system generates an initial gaze
estimation usingModel 1 to determine the cursor’s starting position.
During interactions, cursor coordinates and corresponding image
sequences are continuously collected, withModel 2 producing labels
for filtering valid data pairs used to fine-tune Model 1. As Model
1’s parameters are updated, the latent features of video from Model
1 are also refined, improving the labeling accuracy of Model 2. This
iterative adjustment of both models leads to progressively more
accurate eye tracking.
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Offline evaluation demonstrates that our method achieved an
optimal average eye tracking error of 278.3 px (1.60 cm, 2.29°), rep-
resenting a 27.2% improvement compared to the results without
fine-tuning. Filtering cursor points whose actual distance from
the gaze at 150.0 px (0.86 cm) yields the best calibration results.
Real-time evaluation demonstrates that our method achieved an
optimal average eye-tracking error of 278.3 px (1.60 cm, 2.29°),
representing a 50.0% improvement compared to the results with-
out fine-tuning. Our primary contributions are: (1) proposing an
interaction-integrated eye-tracking calibration method; (2) develop-
ing a two-model system that achieves calibration by filtering valid
data and fine-tuning; (3) analyzing hand-eye coordination behaviors
during the interaction process to ensure the system’s effectiveness;
and (4) evaluating the eye-tracking error after calibration.

In the rest of our paper, Section 2 lists related research. Section
3 details the design space of our interaction method. Section 4
describes the data collection experiments. Section 5 presents the
statistical analysis of hand-eye behavior in interaction data. Section
6 outlines our algorithmic framework. Section 7 provides an offline
evaluation of our method. Section 8 provides a real-time evaluation
of our method. Section 9 discusses the limitations of the paper and
suggests possible future work. Section 10 provides a conclusion of
the entire paper.

2 Related Work
2.1 Eye Tracking on Smartphone
In recent years, eye-tracking technology has attracted researchers’
interest especially the technology on the smartphone. With the
enhancement of the computational power and sensing ability of
the smartphone [32], researchers have designed various kinds of
interaction technology with eye-tracking, such as checking the
notifications in the top bar of the smartphone using gaze combined
with gesture [29], enhancing voice command with gaze on the tar-
get object [41], substituting tapping and swiping with gaze-based
interactions[36] and so on. All of these downstream applications
are based on accurate eye-tracking, for which the researchers have
developed plenty of methods to solve this problem which can be
classified into two categories. One of them is model-based meth-
ods, in which the eye is described as an optical axis and other
parameters [4, 23, 58, 59, 63]. The other is learn-based methods,
in which the gaze point will be estimated by machine learning
methods [9, 54], which is more commonly used in smartphones.
Many works utilized RGB [47, 71] or RGB-D [14, 35, 44, 67] images
to generate the gaze points. Researchers have extensively explored
the feature extraction ability of various models based on CNN like
VGG [72, 74], ResNet [26, 71] and so on, which is shown to be effec-
tive for the image. To capture information between adjacent frames,
models based on RNN were introduced by researchers to extract
temporal information [26, 77]. As for the features, face [10, 17, 73]
and eye [3, 48] images cropped from face tracking are the most com-
monly used. To enhance the information input, some works take
the facial landmarks as extra features [46, 69]. Moreover, the trans-
former was utilized by researchers to capture the cross-attention
between left and right eyes, which is effective in EM-Gaze [76]. In
our study, we also use the ResNet model to extract information
from images and use them to generate the gaze point.

2.2 Implicit Calibration
Although learning-based methods can achieve relatively good gaze
tracking performance on datasets, calibration remains necessary
in practical applications to improve accuracy by "adjusting and
customizing the gaze output to reflect the spatial geometry of the
camera, the screen, and personal differences" [12, 32]. Calibration
is often categorized into two types, one of which is referred to as
explicit calibration, where users are required to actively focus on
provided gaze points. In this regard, the most common methods
are 5-point [23, 47] and 9-point [7, 34]. Some studies also require
users to actively track a moving object with their gaze to obtain a
sufficient number of calibration points [12, 33, 55–57]. The other
type is implicit calibration, where the gaze points are estimated
by users’ natural interactions. In this context, some researchers
take the events of touch [24, 61], mouse and keyboard [21, 25, 37]
for calibration, while some other researchers analyze the saliency
map [68] or the attention of users’ view [2, 28] to find out where
the potential gaze points are. In our works, a pilot study was con-
ducted to explore the relationship between the cursor and the gaze
points during user interactions. What we found is that the distance
between them is close enough to replace the gaze position with
the cursor position in some time, which suggests the potential of
implicit calibration. In another way, it means that the algorithm
can obtain the latest gaze points(substituted by selected cursor po-
sitions) to fine-tune the model to achieve continuous calibration
and keep accuracy.

2.3 Hand-eye Coordination in Interaction
The application of hand-eye coordination in interaction has been
widely studied. In earlier studies, researchers have already dis-
cussed the consistency between gaze and cursor behavior in web
searching [20] and programming debugging [6]. It is precisely due
to this consistency that many gaze-related works use eye move-
ment positions to substitute certain hand operations, such as text
selection [50, 51], cursor movement control, swiping, clicking, and
returning onmobile screens [36], and so on. These studies utilize eye
movement information to replace hand control, thereby achieving
better interaction effects. The article by Liebling et al. [38] provides
a detailed analysis of the consistency between eye gaze and mouse
movements, which points out that in actual PC operations, gaze
and mouse exhibit strong consistency for two-thirds of the time,
while for the remaining one-third, there is some degree of differ-
ence between their behaviors. Furthermore, the study [62] analyzes
data on touch and gaze on tablets, suggesting that "on average, 2
fixations occur before and after the tap moment, within a 2-second
window centered on the tap moment." In addition, researchers have
explored the patterns of hand-eye coordination in different forms
of interaction, such as handwriting letters [75], hovering [60], tar-
get searching [5], and browsing search results [52]. Recent studies
also indicated that in certain interaction modes, mouse and eye
movements exhibit consistency [42], or that eye positions can be
modeled based on mouse positions using information from the
x-axis [43]. In our work, we also observed this hand-eye coordi-
nation through a series of statistical analyses. By using the cursor
position to replace the specific gaze location, we applied this in our
continuous calibration process, yielding promising results.
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3 Interaction Design Space
In this section, we introduce the interaction method of COMETIC,
the interaction design spaces of this approach, the evaluation of
design space, and the specific interaction design choices we made
in this study.

Our method focuses on the eye-tracking-assisted cursor interac-
tion for single-handed interaction on smartphone. Therefore, We
will begin with a brief justification of our choice. Hakka et al. [16]
demonstrated that introducing cursor-based interaction to single
hand smartphone usage can reduce the physical effort required for
target selection, making it a more ergonomic option. Eye-tracking
enhances this further by reducing the need for manual cursor move-
ment [29]. Technologies adopted in Apple Vision Pro, where gaze
can effectively guide and control the cursor, leverage eye move-
ments to minimize the reliance on hand motions. Similar technolo-
gies can be applied to foldable smartphones, where users must hold
the device with both hands and frequently release one hand for
interaction. Eye-tracking assisted cursor-based interaction offers
a solution to reduce this repetitive process. Users can keep both
hand holding the device and achieve target selection by looking at
the target, activate the cursor, and refine the cursor with minimal
thumb movement.

3.1 Design Space
To effectively implement this method, we identified three key stages
in the design of the interaction: Activation, Gaze-Assisted Position-
ing, and Refinement. In our approach, the user first looks at the
target, activates the cursor, and then refines the cursor’s position
to precisely reach the target. The stages are structured as follows:

Activation (Mode Switch): The first challenge is ensuring that
the introduction of cursor-based target selection does not interfere
with the original smartphone interactions. This involves designing a
seamless activation process, where users can easily switch between
standard touch-based input and the cursor-based system, without
disrupting their overall experience.

Gaze Assisted Positioning: Once the cursor is activated, the
system either continuously repositions the cursor using eye-tracking
data, or keeps the cursor fixed at the initial gaze position where
activation occurs. Real-time control offers flexibility, allowing users
to refine cursor placement as needed, but this can add complexity
and create visual distractions. Alternatively, keeping the cursor
fixed at the user’s gaze position upon activation would avoid visual
interference and simplify the process. However, it forces the user
to follow a more rigid workflow, where they must first look at the
target, activate the cursor, and then refine its position.

Refinement: Unlike Apple Vision Pro, which utilizes multiple
cameras to achieve high eye-tracking precision, most standard
devices cannot achieve such accuracy. Therefore, an additional
refinement stage is required, where users can refine the cursor’s
position, to ensure precise target selection. Eye-tracking data will
no longer be used to reposition the cursor during this stage.

3.1.1 Activation (Mode Switch). Several studies have explored the
interaction design for introducing cursors on smartphones [16]. We
categorize activation methods into three types: gesture-based acti-
vation, multi-modal activation, and activation via external devices
or sensors.

Gesture-based activation means defining a hand movement dis-
tinct from common smartphone gestures (e.g., tap, double-tap, long
press, swipe). Options include bezel swiping [27, 53], tapping or
swiping on the back of the phone [64], or shaking the phone, etc.

Multi-modal activation refers to using non-hand-based modali-
ties such as voice or video. One example is to activate the cursor
when the user double blinks, with the action detected by an always-
on front camera.

External devices or sensors can also be introduced, adding new
sensors to different parts of the phone, or using devices like rings
that detect specific interactions (e.g., touch or long press) to trigger
activation.

3.1.2 Gaze-Assisted Positioning. Once the cursor is activated, the
next step is determining how gaze data is used to assist cursor
positioning. Eye-tracking can be integrated into cursor positioning
in two primary ways: fixed gaze point positioning and dynamic
gaze adjustment.

Fixed Gaze Point Positioning: In this method, the cursor is placed
at the estimated gaze point immediately upon activation. In other
words, the user’s gaze location is treated as the starting position
for the cursor. While this method is plain to understand, it assumes
that the user is already looking at the target first before activation,
which may not always be the case. The refinement of the cursor
will start at the fixed position.

Dynamic Gaze Adjustment: This method involves continuously
adjusting the cursor’s position based on the user’s gaze after activa-
tion. This approach allows for more flexible interaction, as the user
does not have to always look at the target before activation. How-
ever, a constantly moving cursor on the screen could be distract-
ing. Furthermore, the system might misinterpret eye movements,
leading to potential instability. Dynamic gaze adjustment will be
stopped once the user starts to refine the cursor. In practice, for
touch input, refinement starts when the thumb touches the screen,
and for smartphone movement or head movement, it begins when
the movement exceeds a specific threshold.

3.1.3 Refinement. Based on previous work [31], we propose three
possible methods for cursor refinement: thumb sliding, smartphone
movement, head movement.

Thumb Sliding: The most common refinement method involves
the user sliding their thumb across the screen to move the cursor.
Users can achieve fine-grained control over the cursor’s movement,
which is especially useful for tasks that require precision, such as
selecting small on-screen elements.

SmartphoneMovement: Another refinement technique leverages
the phone’s internal sensors, such as the IMU or the rear camera’s
optical flow, to detect motion or orientation changes. Users can
refine the cursor position by tilting, rotating, or moving the phone
in space. This finger-free method can be particularly useful when
touch-based interactions are not feasible. However, excessive phone
movement can lead to user fatigue over prolonged periods, and
Both IMU and optical flow methods may struggle to achieve the
level of precision required for fine-grained cursor adjustments.

Head Movement: When the phone is held in a relatively fixed
posture, head movements can be employed to refine the cursor.
Small shifts in head orientation translate into cursor movement,
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offering a hands-free solution similar to phone motion-based refine-
ment. However, as with phone movement, this method also suffers
from issues of user fatigue and limited precision.

3.2 Evaluation of Design Space
We conducted a user study to evaluate different combinations of
the three key stages mentioned above. In the pilot study, partic-
ipants reported that the “Dynamic Gaze-Assisted Positioning” is
very distracting due to the always-on cursor and the inaccurate
eye-tracking. Therefore, we will only evaluate 3 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛𝑠 ×
3 𝑅𝑒 𝑓 𝑖𝑛𝑒𝑚𝑒𝑛𝑡𝑠 = 9 different combinations under the “Static Gaze-
Assisted Positioning”.

3.2.1 Apparatus. As shown in Figure 2a, participants are instructed
to complete the experiment on a Huawei P40 smartphone with their
right hands. The resolution of the smartphone screen is 1200×2486,
and the size is 6.9 cm × 14.3 cm. We used a touch sensor connected
to an Arduino Uno to achieve activation.

A Tobii Eye Tracker 5 is employed to capture the gaze coor-
dinates on a 29-inch screen (3840 px × 2560 px, 65 cm × 36.5 cm),
which are then converted to the coordinates on smartphone screen.
Specifically, the eye tracker is first mounted on a custom 3D-printed
stand to ensure its stability in relation to the smartphone. Next, the
stand and the eye tracker are fixed at the bottom of the computer
screen during calibration (Figure 3a). The orange box indicates the
smartphone body, while the blue box indicates the smartphone
screen. The position and size of the smartphone screen relative to
the computer screen are recorded (top: 1036 px, left: 1684 px, height:
936 px, width: 450 px, Figure 3b). During experiments, participants
need to hold the stand. The coordinates on the smartphone use
the top-left corner as the origin, with the positive x-axis extend-
ing rightward and the positive y-axis extending downward. To
translate x coordinate from the computer screen to the smartphone
screen, we subtract it with the left margin (1684 px), divide it by
the width on the computer screen (450 px), and multiply it with the
width of smartphone screen (1200 px). To translate y coordinate
from the computer screen to the smartphone screen, we subtract it
with the top margin (1036 px), divide it by the height on the com-
puter screen (936 px), and multiply it with the height of smartphone
screen (2486 px). Refer to Equation 1 and 2 for details.

𝑥𝑠𝑚𝑎𝑟𝑡𝑝ℎ𝑜𝑛𝑒 =
𝑥_𝑠𝑐𝑟𝑒𝑒𝑛 − 𝑙𝑒 𝑓 𝑡_𝑚𝑎𝑟𝑔𝑖𝑛𝑜𝑛_𝑠𝑐𝑟𝑒𝑒𝑛

𝑤𝑖𝑑𝑡ℎ𝑜𝑛_𝑠𝑐𝑟𝑒𝑒𝑛
×𝑤𝑖𝑑𝑡ℎ𝑠𝑚𝑎𝑟𝑡𝑝ℎ𝑜𝑛𝑒

(1)

𝑦𝑠𝑚𝑎𝑟𝑡𝑝ℎ𝑜𝑛𝑒 =
𝑦_𝑠𝑐𝑟𝑒𝑒𝑛 − 𝑡𝑜𝑝_𝑚𝑎𝑟𝑔𝑖𝑛_𝑠𝑐𝑟𝑒𝑒𝑛

ℎ𝑒𝑖𝑔ℎ𝑡𝑜𝑛_𝑠𝑐𝑟𝑒𝑒𝑛
× ℎ𝑒𝑖𝑔ℎ𝑡𝑠𝑚𝑎𝑟𝑡𝑝ℎ𝑜𝑛𝑒

(2)

3.2.2 Participants and Procedure. We recruited 9 participants (4
Males, 5 Females, aged 19-28, M=22) from the university. The entire
experiment lasts about an hour. The participants were compensated
at a rate of $15 USD per hour.

The experiment evaluates three types of activation: gesture (dou-
ble tap, abbreviated as “tap”), multi-modal (double blink, abbre-
viated as “blink”), and external device (touch sensor, abbreviated
as “device”); as well as three types of refinement: thumb sliding

(abbreviated as “thumb”), smartphone movement (achieved using
IMU, abbreviated as “imu”), and head movement (abbreviated as
“head”). This results in nine different combinations. The experimen-
tal order was counterbalanced using a Latin square to ensure that
each combination appeared once in every sequence.

At the start of the experiment, participants were instructed to
finish the inherent calibration of Tobii Eye Tracker. Next, they
iterated through nine combinations, selecting ten 200 px × 200 px
targets that were randomly displayed on the smartphone screen
for each combination (Figure 2b). A touch sensor connected to an
Arduino Uno is used for activation. When the activation type is
“device,” the touch sensor is placed on the back of the smartphone,
within easy reach of the participant’s index finger. For “tap” and
“blink” activations, the process is implemented via aWizard of Oz ap-
proach, where the experimenter observes the participant’s actions
and manually controls the touch sensor to trigger the activation.
After activation, the cursor was positioned at the gaze coordinate
on the smartphone screen, estimated and converted from the eye
tracker. Participants need to move the cursor into the target using
the corresponding refinement method. If the activation method is
“tap” or “blink”, participants need to re-conduct the activation to
finish selection. If the activation method is “touch”, participants
can either lift their thumb from the screen, or lift their index finger
from the touch sensor, to finish selection. At the end of each itera-
tion, participants need to rate the six dimensions from NASA-LTX
(mental demand, physical demand, efficiency, performance, effort,
frustration), as well as the learning cost and the covertness of the
combination.

3.2.3 Design Space Evaluation Results. Figure 4 and Table 1 shows
the subjective ratings of different combinations across various di-
mensions. We reordered the dimensions so that indicators with
lower values being better performance (mental demand, physical
demand, effort, frustration, learning cost) are on the left, while
those with higher values being better performance (efficiency, per-
formance, covertness) are on the right. The “rank” in Table 1 is first
calculated based on each dimension’s value-performance relation-
ship, then averaged across the overall rank.

Among different combinations, “blink, touch”, “tap, touch”, “de-
vice touch” are ranked at top three. The Kruskal-Wallis H test
shows no significant differences between these three combinations
across all eight dimensions. Table 2 shows the number of combina-
tions significantly outperformed by each of them. Notably, “device,
touch” outperforms others across most dimensions, followed by
“tap, touch,” while ‘blink, touch” significantly outperforms only a
few combinations

3.3 Implementation in This Study
Based on the evaluation result in Section 3.2.3, we use touch sensor
(device) for activation, fixed gaze point positioning for gaze-assisted
positioning (static), and thumb sliding (touch) for cursor refinement.

The interaction process is as follows: Users touch the sensor on
the back to activate the cursor at the gaze estimation location. Then
they slide to move the cursor. A click is registered when they lift
their finger.
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(a) Smartphone, Eye Tracker in 3D-Printed Stand, and Touch Sensor
with Arduino

(b) Target Selection Task (Use “touch” for Refinement as An
Example)

Figure 2: The Apparatus and Experimental Task. The Target Selection Procedure in Figure 2b: (1) the target is randomly
displayed on the screen; (2) the participant activated and refined the cursor (we use touch as an example); (3) the target is
selected at deactivation (lift of thumb) as the cursor is positioned inside the target.

(a) Eye tracker and 3D-printed stand. (b) Layout on screen.

Figure 3: The eye tracker and 3D-printed stand is attached to the screen during the calibration of eye tracker. The boxes in the
screen indicate the position of the smartphone relative to the screen.

4 Data Collection Experiment
In this section, we will collect the data necessary for eye-tracking
and calibration. Specifically, we will collect cursor traces on the
smartphone, video from the front camera, and gaze positions on
the smartphone using a Tobii eye tracker. There are three main
reasons for collecting this data. First, we aim to understand the cor-
relation between eye movement and cursor traces, thereby demon-
strating the potential of cursor-based interactive calibration for
eye-tracking. Second, we aim to design and implement algorithms
for eye-tracking and calibration using this data. Finally, we need to
evaluate the effectiveness of our algorithms for this dataset.

4.1 Apparatus
The apparatus used in this section is almost identical to that in
Section 3.2.1’s design space experiment. There are two differences:
(1) the 3D-printed stand is placed on a metal stand to minimize any
potential phone movement caused by swiping (Figure 5a); (2) we
do not use touch sensor for activation in this experiment.

4.2 Participants and Procedure
A total of 24 participants (7 females, aged 20-30, M = 24.0) were
recruited from the university campus for this experiment. None
of the participants had previously participated in any related pilot
studies. During the experiment, participants sat comfortably in
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Figure 4: The Subjective Ratings for Different Interaction Combinations

combination mental
demand

physical
demand

effort frustra-
tion

learning
cost

efficien-
cy

perform-
ance

covert-
ness

rank

blink, imu 3.9 ± 1.4 5.2 ± 1.0 5.3 ± 1.4 4.0 ± 1.5 3.6 ± 1.3 3.1 ± 1.3 3.4 ± 1.7 4.0 ± 1.2 7.8
blink, head 4.2 ± 1.2 5.6 ± 0.8 5.2 ± 0.8 3.9 ± 1.0 4.1 ± 1.6 3.1 ± 1.1 3.4 ± 1.2 3.0 ± 1.2 8.2
blink, touch 2.9 ± 0.7 3.8 ± 1.1 3.8 ± 1.2 2.7 ± 1.4 2.8 ± 0.9 4.9 ± 1.4 5.4 ± 1.2 4.6 ± 1.1 2.9
tap, imu 3.8 ± 1.5 4.8 ± 1.2 5.1 ± 1.4 3.7 ± 1.5 3.6 ± 1.3 3.3 ± 1.6 3.8 ± 1.7 3.9 ± 1.3 5.9
tap, head 3.8 ± 1.1 5.1 ± 1.0 5.1 ± 1.0 3.7 ± 1.1 3.4 ± 1.1 3.2 ± 1.1 3.9 ± 1.0 2.8 ± 0.9 5.9
tap, touch 2.7 ± 0.7 3.3 ± 0.9 3.4 ± 1.0 2.4 ± 1.2 2.6 ± 0.8 5.6 ± 0.8 5.3 ± 1.2 5.2 ± 1.0 2.1
device, imu 3.9 ± 1.7 4.8 ± 1.3 4.4 ± 1.7 3.4 ± 1.6 3.2 ± 1.2 3.9 ± 1.6 4.0 ± 1.9 4.0 ± 1.1 4.9
device, head 4.1 ± 1.1 5.1 ± 1.1 5.1 ± 1.0 3.7 ± 0.7 3.2 ± 0.9 3.7 ± 1.2 4.0 ± 0.8 2.8 ± 0.8 6.4
device, touch 2.6 ± 0.7 2.7 ± 1.5 2.9 ± 1.1 1.9 ± 1.0 2.4 ± 1.1 5.8 ± 1.2 6.1 ± 0.7 5.6 ± 1.0 1.0

Table 1: Mean, Standard Deviation, and Rank of Subjective Ratings for Different Combinations

combination mental
demand

physical
demand

effort frustra-
tion

learning
cost

efficien-
cy

perform-
ance

covert-
ness

device, touch 5 6 6 6 6 6 0 6
tap, touch 2 6 6 4 5 2 0 3
blink, touch 1 3 4 5 2 1 0 3

Table 2: Number of Combinations Significantly Outperformed by the Given Combination in Each Dimension

target size (px) 100 × 100 200 × 200 300 × 100 600 × 600
random location number 16 16 16 8

corners and edges top left, top middle, top right,
bottom left, bottom middle, bottom right

target size (px) 1100 × 400 1100 × 600 1100 × 800 1100 × 1100
random location number 8 8 8 8

corners and edges top, bottom
Table 3: Target Configuration during Experiment

front of the smartphone and its stand. The entire experiment lasted approximately 30 minutes. Participants were compensated at a rate
of $15 USD per hour. The experiment was divided into two phases:
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(a) Apparatus for Experiment (b) Layouts in Experiment.

Figure 5: Apparatus and Layouts in Experiment. For subfigures in Figure5b: (1) shows the layout during calibration. (2)-(4) show
the distance between the cursor and target in three different distances. (5)-(12) show eight targets of different sizes.

Manual Calibration Phase: In this phase, a 3× 3 grid of points
was sequentially displayed on the smartphone screen from top to
bottom and left to right (see Figure 5b(1)). Each point remained on
screen for 2 seconds, during which participants were instructed
to focus on the point without blinking unless switching between
points. The purpose of this phase was to collect the position of
points and their corresponding eye-tracking data for calibration.
In the pilot study, we attempted to fix the smartphone and its
3D-printed stand in front of the screen for calibration using the
Tobii eye tracker’s built-in calibration system, but the results were
unsatisfactory. Therefore, we manually collected calibration data
during the experiment and later performed a nine-point calibration
on the collected data.

Cursor-Based Target Selection Phase: In this phase, both a
target and a cursor appeared on the smartphone screen. Participants
moved the cursor by sliding their thumb on the screen. The task
was considered successful if the cursor was moved inside the target
when the participant lifted their thumb. If the cursor was not placed
inside the target, it would reset to its starting position. The cursor
movement followed a variable control-display (CD) ratio based on
the sliding speed[45], where faster movements translated to greater
cursor displacement.

As shown in Table 3, the targets have 8 different sizes (Fig-
ure5b(5)-(12) show their sizes relative to the screen) and appeared at
random locations on the screen for multiple times. In addition, the
target appeared at specific positions along the corners and edges of
the screen at least once, yielding a total of 120 unique combinations
of target positions and sizes. Positions along the corners and edges
of the screen are further divided into two categories, since for tar-
gets with the width of 1100 px, there will not be much difference
between left and right, given the screen width is 1200 px.

The cursor was circular, with a diameter of 90 pixels. The dis-
tance from the cursor to the target was categorized into three levels:
200, 600, and 1200 pixels, simulating varying levels of eye-tracking
estimation accuracy (Figure5b(2)-(4) show three types of distances).
The distance is measured from the center of the cursor to the near-
est edge or corner of the target. The relative position between the
cursor and the target was randomly generated. Since the goal of the
experiment is to understand and model the relationship between
eye movement and cursor behavior, we did not use the activation
method mentioned in section 3.3 but randomly generated the cur-
sor positions to increase data diversity. This results in a total of
120𝑡𝑎𝑟𝑔𝑒𝑡−𝑠𝑖𝑧𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑠×3𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑙𝑒𝑣𝑒𝑙𝑠 = 360𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡𝑡𝑟𝑖𝑎𝑙𝑠 .

We will collect the following data during the experiment: the
size and position of the target, the sequence of cursor positions, the
sequence of eye tracking data (gaze positions), and the video from
the front camera.

4.3 Data Pre-processing
4.3.1 Manual Calibration of Eye Tracking Data. As mentioned be-
fore, during the Manual Calibration Phase, we collected sequences
of gaze coordinates provided by the Tobii eye tracker 5 when partic-
ipants fixated on nine specific calibration points on the screen. We
mapped each gaze coordinate to the corresponding calibration point
and used the RANSAC (Random Sample Consensus) method to com-
pute a homography matrix that minimizes the distance between
gaze-calibration pairs. This matrix was then applied to move the
gaze coordinates during the Cursor-Based Target Selection Phase.
In the rest of the paper, we will use the transformed coordinates as
the ground truth for gaze on the smartphone screen.

4.3.2 Data Segmentation and Alignment. During the Cursor-Based
Target Selection Phase, participants complete 360 trials. Both front
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camera and cursor data are recorded on the smartphone and seg-
mented by trial, while the eye tracker continuously captures data.
Signals sent from the smartphone to the computer at the start and
end of each trial are used to segment the eye-tracking data. Since
video, cursor, and eye-tracking data are collected on different de-
vices with varying sampling rates, we resample the eye-tracking
and cursor data to align them with the video timestamps for syn-
chronization.

4.3.3 Image Cropping. As previously mentioned, we used the front
camera of the smartphone to record videos during the experiment.
These videos typically capture the participant’s head and part of
the upper body. To facilitate subsequent neural network training,
we crop the original images into three parts. Using Mediapipe [39],
we detect the participant’s face, left eye, and right eye in the video
frames, and crop the images accordingly to generate three new
video segments. Additionally, we record the coordinates and size
of these three cropped sections relative to the original frame as a
video info sequence.

5 Statistical Analysis of Gaze and Cursor
Behavior

In this section, we will analyze the distance between the gaze po-
sitions and the cursor coordinates. Figure 6 presents a waterfall
chart of the gaze-to-cursor distance across all participants. We
can see that approximately 50% of the data points have a distance
smaller than 200 px, and 84% have a distance smaller than 600 px. As
mentioned in section 4.2, only in one-third of the trials, the initial
cursor-to-target distance is 200 px. Therefore, we believe there is a
clear correlation between the movement of the user’s gaze and the
cursor.

We observed two primary patterns in the relationship between
the user’s gaze and the cursor: (1) The distance between the gaze
and the cursor gradually decreases over time. We attribute this
to the fact that in certain cases, the user consistently focuses on
the target without looking at the cursor, so the distance decreases
as the cursor moves closer to the target. (2) The gaze-to-cursor
distance remains stable for a period. This is because, in some cases,
the user’s gaze follows the cursor’s movement.

In the following sections, we will discuss these two patterns in
detail.

5.1 Gaze-Cursor Distance Convergence
Figure 7 shows the mean distance between the gaze and cursor over
time, with time normalized. It is evident that the mean distance
between them gradually decreases as time progresses. At about 25%
of the time, the distance between gaze and cursor is about 400 px.
At about 70% of the time, the mean distance is about 200 px. This
suggests that as the user moves the cursor closer to the target, the
gaze position also converges toward the cursor. We believe that in
the final stages of cursor control, gaze position can, to some extent,
be substituted by cursor position. In real use cases, this provides a
certain amount of gaze ground truth, enabling us to gather the data
needed for subsequent fine-tuning of the model. In other words,
this cursor behavior at the end of control sequences offers a possible
reference point for gaze position.

5.2 Gaze Following Cursor
We defined gaze-following cursor behavior using three features:
(1) the distance between the gaze and cursor is below a threshold
𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 , (2) the number of consecutive points where the distance
remains below this threshold exceeds a threshold 𝑡𝑛𝑢𝑚 , and (3) the
angle between the movement directions of the gaze and cursor is
below a threshold 𝑡𝑎𝑛𝑔𝑙𝑒 . With the last threshold 𝑡𝑎𝑛𝑔𝑙𝑒 fixed to 90°,
the first two thresholds 𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 and 𝑡𝑛𝑢𝑚 were sampled within
a certain range at defined intervals. This allowed us to create a
heatmap (Figure 8) showing the percentage of data points that meet
the behavior definition. X axis shows the value of 𝑡𝑛𝑢𝑚 and y axis
shows the value of 𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 . Since our tobii eye tracker mentioned
in section 4 is sampled at 30Hz, multiply 𝑡𝑛𝑢𝑚 by 0.03 gives the
duration in seconds.

From Figure 8, we observe that when the conditions for defining
gaze-following cursor behavior are more relaxed (i.e., 𝑡𝑛𝑢𝑚 ≤ 8
and 400 ≤ 𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 500), over 30% of the data meets these
criteria. And when the conditions become stricter(i.e., 𝑡𝑛𝑢𝑚 ≤ 12
and 200 ≤ 𝑡𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≤ 400), approximately 10% to 30% of the data
still satisfies the requirements.

These results indicate that during the user’s control of the cursor,
there are chains of consecutive cursor points that not only maintain
close proximity to the gaze but also align with the gaze’s movement
direction. These points provide another possible reference for gaze
position.

6 COMETIC Algorithm
In this section, we will discuss the COMETIC algorithm. The core
problem COMETIC aims to solve is how to fine-tune a video-to-
gaze model during its use, specifically, how to obtain the true gaze
positions required for fine-tuning without the eye tracker. Our
approach proposes using certain cursor coordinates from the cursor-
based interaction process as proxies for gaze positions (i.e., those
with a high probability of having a distance from the gaze position
below a preset threshold, 𝜏).

The algorithm involves two models with three objectives:
(1) Given a video (image sequence) input, Model 1 generates

the corresponding gaze position sequence for the user.
(2) Given a cursor sequence input, Model 2 labels whether each

cursor position can be used as a proxy for the gaze position.
(3) With pre-trained Model 1 and Model 2, we aim to leverage

new user data to optimize both models simultaneously.

6.1 Model 1: Video to Gaze
Model 1 takes as input both a video (image sequence) and the corre-
sponding positional and size information of the regions of interest
(referred to as video information), and outputs the gaze position on
the screen. Figure 9 gives the structure of Model 1. As mentioned
in Section 4.3.3, the front camera video is cropped into three im-
ages: left eye, right eye, and head. These images are first processed
through a ResNet-18 [18] followed by two fully connected layers.
The features extracted from these images are then concatenated
with the video information, resulting in latent features. These latent
features are passed through five fully connected layers to produce
the final gaze coordinates, which are normalized between 0 and 1
based on the screen’s width and height.
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Figure 6: Waterfall chart of distances grouped by 50 intervals

Figure 7: Line chart of distance over time

6.2 Model 2: Cursor Labeling
Model 2 receives the cursor coordinate sequence and the latent fea-
tures from Model 1 as inputs, and outputs labels indicating whether
each cursor coordinate can serve as a proxy for the gaze position.
The label is determined by computing the distance between each
cursor coordinate and the corresponding gaze position mentioned
in Section 4.3.2. If the distance exceeds the preset threshold 𝜏 , the
label is False, indicating the cursor coordinate can not serve as a
proxy; otherwise, the label is True, indicating the cursor coordinate
can serve as a proxy. Figure 9 gives the structure of Model 2. The

cursor coordinate sequence first passes through one fully connected
layer, followed by an LSTM [19] and another fully connected layer,
and is then concatenated with the corresponding latent features
from the video sequence. Afterward, the data is passed through five
more fully connected layers to produce the final labels.

6.3 Online Fine-Tuning with New User Data
As previously mentioned, the primary goal of this work is to al-
low the system to quickly fine-tune both Model 1 and Model 2
when encountering new users, thereby improving the eye tracking.
Specifically, after collecting video and cursor coordinate sequences
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Figure 8: Heatmap of number threshold and different distance threshold

from a new user during cursor interaction, Model 2 is used to filter
the cursor coordinates, selecting those likely to serve as accurate
proxies for the gaze position.

Once the filtered cursor coordinates are obtained, they are paired
with corresponding images to fine-tuneModel 1. Similar to standard
transfer learning, a smaller learning rate and fewer epochs are
adopted. However, unlike the typical approach, we fine-tune the
entire model instead of only the final layers.

After fine-tuning Model 1, its internal parameters are adjusted
to better extract features for the new user. At this point, we repeat
the filtering process with Model 2, using new latent features from
Model 1, selecting new cursor coordinates, and continuing the fine-
tuning of Model 1. This iterative fine-tune process further refines
the model’s ability to achieve better eye tracking for new users.

7 Offline Evaluation with Dataset
In this section, we will evaluate our approach using the previously
collected dataset, focusing on three main scenarios:

(1) We will first assess the gaze error of Model 1. It takes video
as input and outputs gaze positions. We assess the gaze error
when using cursor coordinates as a proxy for gaze positions

in training, under the condition that the distance between
the cursor and gaze is below different thresholds 𝜏 .

(2) Next we will assess Model 2, which takes the latent features
of video and cursor sequence as input and outputs labels
determining whether cursor coordinates can serve as a proxy
for gaze positions. We will evaluate its true positive rate
under different 𝜏 values. Additionally, we will analyze the
difference between the gaze-cursor distance and the 𝜏 value
of false positive cases (abbreviated as “FP difference”).

(3) We will monitor the performance changes in both Model 1
and Model 2 during the iterative fine-tune process, including
the gaze error of Model 1, as well as the true positive rate
and FP difference of Model 2.

In our evaluation, we applied a leave-one-out training approach, re-
peating the training process 24 times. For the first two scenarios, the
left-out participant served as the validation set, while the remaining
data was used for training. For the iterative fine-tune scenario, the
data from participants who were not left out was used to pre-train
Model 1 and Model 2. The first 20% of the left-out participant’s data
(equivalent to 72 target selection trials, which takes approximately
3-4 minutes) was used as the training set for iterative fine-tuning,
while the remaining 80% was served for validation.
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Figure 9: Structure of COMETIC Models. Model 1 takes video and video info as input. Video first goes into resnet and then be
concatenated with video info. After passing through two fully connect layers, we get latent features. Latent features will then
pass through five fully connected layers to get the gaze position sequences. Model 2 takes the cursor sequence as input. After
passing throught fully connected layer 1, LSTM, and fully connected layer 2, it will be concatenated with latent features from
Model 1. The result will then pass through five fully connected layers and output cursor label sequence. In the bottom of this
figure, it shows that we use the output of Model 2 to filter valid cursor coordinates, pair it with image and image info, and
finetune the Model 1.

The distance mentioned in this section is initially measured in
pixels. We will convert it to centimeters based on the smartphone
size and resolution (Section 3.2.1), and then convert it to angular
units assuming a 40cm distance between the participant and the
smartphone.

7.1 Gaze Error of Model 1
Figure 10 shows the box plot of gaze error of Model 1 with threshold
𝜏 values ranging from 0 to 1000.0 px (5.75 cm). The gaze error is
defined as the Euclidean distance between the actual gaze position
and the estimated gaze position provided by Model 1. Ideally, the
gaze error should be minimized for optimal performance. A 𝜏 value
of 0 indicates that no cursor coordinates were used to replace the
gaze positions, while positive 𝜏 values represent the use of cursor

coordinates in place of gaze positions when the distance between
them is less than 𝜏 .

RM-ANOVA revealed that different 𝜏 values significantly affected
the gaze error (𝐹8.37,192.45 = 38.20, 𝑝 < 0.01). Table 4 shows the post-
hoc Bonferroni analysis under different 𝜏 values. The gaze errors
for the 𝜏 combinations below are significantly higher than those for
the 𝜏 above. It reveals 𝜏 values of 700.0 px (4.03 cm) is a threshold,
where gaze error below this tau value is typically significantly lower
than gaze error above it.

7.2 True Positive Rate and FP Difference of
Model 2

Model 2 predicts whether the Euclidean distance between the cur-
sor coordinate and the gaze position is less than the threshold 𝜏 . A
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Figure 10: Gaze Error of Model 1 Given Different 𝜏 values
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Table 4: 𝜏 Values with and Corresponding 𝜏 Ranges with Significantly Greater Gaze Error.

higher true positive rate means a larger proportion of actual posi-
tives are correctly identified by the model. Figure 11 shows the true
positive rate of Model 2 for five participants across 𝜏 values ranging
from 100.0 px (0.58 cm) to 1000.0 pmc (5.75 cm). True positive rate
starts around 0.3 and increases to approximately 0.9 at 𝜏 = 750.0 px
(4.31 cm), eventually stabilizing around 0.95 at 𝜏 = 1000.0 px (5.75
cm).

Figure 12 illustrates the FP difference, with 𝜏 ranging from 100.0
px (0.58 cm) to 1000.0 px (5.75 cm). A smaller difference in false
positives means that when Model 2 misclassifies an object, the
gaze-cursor distance of the misclassified object is closer to the
corresponding 𝜏 value. A smaller difference is preferable. However,
ANOVA results indicate no significant variation across different 𝜏
values, with the average distance remaining consistently around
183.0 px (1.05 cm).

7.3 Performance During Iterative Fine-tune
Process

Table 5 presents the mean, standard deviation (std) of the minimal
gaze error results across iterations during iterative fine-tuning for
different 𝜏 values, as well as the improvement compared to the
model without fine-tuning. The best calibration performance and
largest improvement were observed at 𝜏 = 150.0 px (0.86 cm), where
the gaze error reached 278.3 px (1.60 cm, 2.29°), representing a 27.2%
improvement over the result without fine-tune.

Figure 13, 14, and 15 shows the gaze error of Model 1, true
positive rate ofModel 2, and FP difference ofModel 2, given different
𝜏 values and iterations. Blue and green markers indicate the values
of participants for different iterations (iter 1 to 5), while orange
markers represent the results from the pre-trained model without
fine-tuning (iter 0). As noted earlier, there are five rounds of iterative
fine-tuning, the markers with higher brightness indicating a smaller
iteration index and lower brightness indicating a larger iteration
index.
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Figure 11: True Positive Rate of Model 2 Given Different 𝜏 Values
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Figure 12: FP Difference of Model 2 Given Different 𝜏 Values

7.3.1 Performance of Model 1 in Iterative Fine-tuning. As shown in
Figure 13, the gaze error without fine-tuning is significantly larger
than those with fine-tuning. Additionally, after iteration 1, the gaze
error increases with the 𝜏 value and the iteration. RM-ANOVA
result indicates a significant effect from 𝜏 ∗ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 (𝐹10.36,238.37 =
23.92, 𝑝 < 0.001). Post-hoc LSD analysis supports the conclusion
above.

Table 6 shows the significance of gaze error between current
and previous iteration under different 𝜏 values. A “-” indicates the
current iteration has significantly lower gaze error, “+” indicates
significantly higher, and “/” indicates no significant difference. It
is evident that the gaze error of iteration 0 (without fine-tuning)
is significantly higher than those of iteration from 2 to 5. Further-
more, fine-tuning no longer yields significant improvements after
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𝜏 value 0 100 150 200 250 300 350 400 450 500
Mean (px) 413.1 279.1 278.3 282.2 281.4 286.6 284.1 289.4 292.8 293.3
Mean (cm) 2.37 1.60 1.60 1.62 1.62 1.65 1.63 1.66 1.68 1.69
Mean (°) 3.40 2.30 2.29 2.32 2.32 2.36 2.34 2.38 2.41 2.41
Std (px) 227.7 90.8 83.7 90.2 84.5 100.0 85.8 85.0 90.4 93.2
Std (cm) 1.31 0.52 0.48 0.52 0.49 0.57 0.49 0.49 0.52 0.54
Std (°) 1.87 0.75 0.69 0.74 0.70 0.82 0.71 0.70 0.74 0.77
Improvement 0 26.9% 27.2% 26.1% 26.6% 24.9% 25.7% 24.3% 23.9% 23.0%

𝜏 value 550 600 650 700 750 800 850 900 950 1000
Mean (px) 295.3 293.1 301.2 305.7 303.3 304.5 308.0 302.7 312.9 314.0
Mean (cm) 1.70 1.69 1.73 1.76 1.74 1.75 1.77 1.74 1.80 1.81
Mean (°) 2.43 2.41 2.48 2.52 2.50 2.51 2.53 2.49 2.58 2.58
Std (px) 89.1 93.6 92.3 92.0 92.9 89.7 95.8 94.7 101.0 92.2
Std (cm) 0.51 0.54 0.53 0.53 0.53 0.52 0.55 0.54 0.58 0.53
Std (°) 0.73 0.77 0.76 0.76 0.77 0.74 0.79 0.78 0.83 0.76
Improvement 22.4% 23.3% 21.3% 19.8% 20.8% 20.8% 19.3% 20.9% 18.3% 18.1%

Table 5: Mean, Standard Deviation and Improvement to No Fine-tuning of Minimal Gaze Error under Different 𝜏 for Iterative
Result
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Iter: Gaze Error under Different Tau Value
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Figure 13: Gaze Error of Model 1 Given Different 𝜏 Values and Iterations

𝜏 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
iter 1 - - - - - - - - - - - - - - - - - - -
iter 2 - - - - - - - - / / / / / / / / / / /
iter 3 - - / / / / / / / + + + + + + + + + +
iter 4 / / / / / + / + + + + + + + + + + + +
iter 5 / / / / + / + + + + + + + + + + + + +
Table 6: Significance Gaze Error Difference between Current and Previous Iteration under Different 𝜏 Values

the fourth iteration, and when 𝜏 exceeds 300.0 px (1.73 cm), fine-
tuning leads to worse performance. This may be because higher 𝜏

values inherently mean the information used for fine-tuning is less
accurate.
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iteration iter=2 iter=3 iter=4 iter=5
top three 𝜏 with
least gaze error 250 300 350 100 150 250 100 150 250 100 150 200

𝜏 with significantly
greater gaze error

650
to
1000

650
to
1000

650
to
1000

450
to
1000

450
to
1000

450
to
1000

450
to
1000

400
to
1000

400
to
1000

300
to
1000

300
to
1000

400
to
1000

Table 7: Top Three 𝜏 Values with the Smallest Gaze Error and Corresponding 𝜏 Ranges with Significantly Greater Gaze Error for
Different Iterations

For iteration 0 (without fine-tuning) and iteration 1, there are no
significant differences in gaze error across different 𝜏 values. Table
7 shows the top three 𝜏 values with the smallest gaze error, and
their corresponding 𝜏 ranges with significantly greater gaze error
for iterations from 2 to 5. For each iteration, there is a threshold-like
𝜏 value, above which the gaze error is significantly greater than for
the top three 𝜏 values with the smallest gaze error. Furthermore, as
the iterations increase, this threshold value continues to decrease.

In summary, we suggest to use a 𝜏 value smaller than 300.0 px
(1.73 cm) in practical applications.

7.3.2 Performance of Model 2 in Iterative Fine-tuning. As shown in
Figure 14, the relationship between true positive rate and 𝜏 value
is consistent with that in Figure 11. RM-ANOVA result shows that
neither the interaction effect 𝜏 ∗𝑖𝑡𝑒𝑟 or the effect of iter is significant,
indicating the fine-tuning does not improve the true positive rate
of Model 2.

As shown in Figure 15, the FP difference without fine-tuning is
significantly larger than that with fine-tuning. The FP difference
increases with the 𝜏 value, as well as iterations when 𝜏 value is large.
RM-ANOVA result indicates a significant effect from 𝜏 ∗ 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛
(𝐹9.38,215.7 = 2.8, 𝑝 < 0.001). Post-hoc LSD analysis supports the
conclusion above.

Table 8 shows the difference of FP difference between current
and previous iteration under different 𝜏 values. A “-” indicates the
current iteration has significantly lower FP difference, “+” indicates
significantly higher, and “/” indicates no significant difference. It is
evident that the FP difference of iteration 0 (without fine-tuning) is
significantly higher than those of iteration from 2 to 5. Furthermore,
fine-tuning no longer yields significant improvements after the
third iteration, and when 𝜏 exceeds 450.0 px (2.59 cm), fine-tuning
constantly leads to worse performance.

In summary, we prove that themodel structure in Section 6which
introduces latent features of video from Model 1 into Model 2 could
decrease the difference between the gaze-cursor distance and the
𝜏 value of false positive cases. Additionally, we suggest to use a 𝜏
value smaller than 450.0 px (2.59 cm) in practical applications.

7.4 Summary of Evaluation
In conclusion, our iterative method achieved an optimal gaze error
of 278.3 px (1.60 cm, 2.29°) when 𝜏 is 150.0 px (0.86 cm) and iteration
is 5, representing a 27.2% improvement compared to the results
without fine-tune. The 𝜏 value has a significant impact on Model 1’s
gaze error and Model 2’s true positive rate, but has no significant
impact on Model 2’s FP difference. In practical application, we rec-
ommend using a 𝜏 value smaller than 300.0 px (1.73 cm). Iteration

has a significant impact on Model 1’s gaze error and Model 2’s FP
difference, but has no significant impact on Model 2’s true positive
rate. For both Model 1’s gaze error and Model 2’s FP difference,
those of iteration 0 (without fine-tuning) are significantly worse
than those of iteration from 1 to 5 (after fine-tuning). More iter-
ations of fine-tuning improve performance when the 𝜏 value is
small, but reduce performance when the 𝜏 value is large. This may
be because higher 𝜏 values inherently lead to less accurate infor-
mation for fine-tuning. Furthermore, the improvement observed
with increasing iterations highlights the effectiveness of the model
structure described in Section 6, where latent video features from
Model 1 are incorporated into Model 2 to enhance performance.

8 Real-Time Evaluation
8.1 Apparatus, Participants and Procedure
The apparatus used in this Section is identical to that in Section
3.2.1’s design space experiment.

A total of 14 participants (5 females, aged 19-31, M = 24.4) were
recruited from the university for this experiment. None of the
participants had previously participated in the data collection ex-
periment. During the experiment, participants held the 3D-printed
stand with the Tobii eye tracker, used the touch tensor attached to
the back of the smartphone to achieve activation, and used thumb
slide to achieve refinement. This time participants did not use the
metal stand to prevent shakes from swipes, and were told to use
the smartphone naturally. The entire experiment lasted 45 minutes
to an hour. Participants were compensated at a rate of $15 USD per
hour.

The procedure is almost identical to that in Section 4.2. There are
three differences: (1) Participants will conduct five rounds in one
experiment; (2) In each round, participants will first conduct manual
calibration, followed by 50 target selection tasks; (3) Participants
could rest for five minutes between each round.

We will collect the following data during the experiment: the
size and position of the target, the sequence of cursor positions, the
sequence of eye tracking data (gaze positions), and the video from
the front camera. We used all the data in Section 4 to train a model
at 𝜏 = 150.0 px (0.86 cm) and 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 5, which is then used as
the initial model in the experiment. After each round, the collected
data is pre-processed as mentioned in Section 4.3, and then used to
fine-tune the model in real-time. The updated model is applied in
the next round of the experiment.
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Figure 14: True Positive Rate of Model 2 Given Different 𝜏 Values and Iterations
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Figure 15: FP difference of Model 2 Given Different 𝜏 Values and Iterations

𝜏 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000
iter 1 - - - - - - - - - - - - - - - - - - -
iter 2 - - - / / / / / / / / / / / / / / / /
iter 3 - / / / / / / / / / / / / / + / / / +
iter 4 / / / / / / / / + / / / + + / + + / /
iter 5 - / / / + / / + + + + + + + + + + / /

Table 8: Significance of Difference of FP Difference between Current and Previous Iteration under Different 𝜏 Values
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Round 1 2 3 4 5 minimal
Mean (px) 893.6 801.7 590.1 517.2 538.0 446.7
Mean (cm) 5.14 4.61 3.39 2.97 3.09 2.57
Mean (°) 4.89 4.39 3.27 2.84 2.95 2.45
Std (px) 393.0 645.2 139.7 160.8 177.7 112.2
Std (cm) 2.26 3.71 0.8 0.92 1.02 0.64
Std (°) 2.17 3.54 0.77 0.88 0.98 0.62
Improvement / 10.3% 34.0% 42.1% 39.8% 50.0%

Table 9: Mean, Standard Deviation of Gaze Error for Five Rounds and for the Overall Minimum, and Improvement Compared
to the Mean without Fine-tuning

8.2 Real-time Evaluation Result
Table 9 shows the mean and standard deviation of gaze error for five
rounds, and for the overall minimum, as well as the improvement of
gaze error mean compared to that without fine-tuning. The overall
minimum is the minimal gaze error among five rounds. We focus
on the overall minimum because when fine-tuning with the same
meta data, its effects vary across participants due to differences in
their data distributions. The gaze error of 𝑖-th round is computed as
follows: (1) Use the model from the 𝑖−1-th round, which was trained
on data from rounds 1 to 𝑖 − 1, and the front camera data collected
in the 𝑖-th round to compute the 𝑔𝑎𝑧𝑒𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 . (2) Eye tracker data
from the 𝑖-th round is used as the 𝑔𝑎𝑧𝑒𝑡𝑟𝑢𝑡ℎ . (3) The gaze error
is computed as the Euclidean distance between 𝑔𝑎𝑧𝑒𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 and
𝑔𝑎𝑧𝑒𝑡𝑟𝑢𝑡ℎ . Therefore, the data of Round 1 demonstrates the mean
and std without fine-tuning, the data of Round 2 demonstrates the
mean and std computed using data from Round 2 and the model
from Round 1, etc.

As a result, our method shows a gaze error mean of 893.6 px (5.14
cm, 7.32°) without fine-tuning. Among the rounds, the fourth round
has the lowest gaze error mean at 517.2 px (2.98 cm, 4.25°), represent-
ing a 42.1% improvement compared to the no fine-tuning condition.
The mean of overall minimum gaze error across all rounds is 446.7
px (2.57 cm, 3.68°), which is a 50.0% improvement over the no fine-
tuning condition. Compared to offline performance, it outperforms
real-world performance by 37.8%. We propose several possible ex-
planations for this discrepancy:

(1) Significant posture changes occurred between rounds during
the real-time experiment, as participants had to put down
and pick up the smartphone for each round. In contrast,
our data used in the offline evaluation was collected while
participants consistently held the smartphone, maintaining
stable postures.

(2) Less stable camera footage during interaction due to thumb
taps and swipes, as well as head movements, since the real-
time experiment did not use the metal stand.

(3) Less data for fine-tuning. The average time consumption of
the fine-tuning in the real-time experiment from Round 1
to Round 5 is 22.09 s, 40.98 s, 67.24 s, 84.79 s, 109.25 s. The
average time consumption of offline training on our dataset
is around 350 s. This difference reflects the variation in the
amount of data, which directly impacts the fine-tuning per-
formance.

8.3 Empirical Comparison with Other
Calibration Method

Table 10 shows the empirical comparison of gaze error between
COMETIC and other existing methods. We listed both the offline
gaze error from Section 7, as well as the real-time gaze error from
Section 8. The results indicate that the gaze error of our method is
comparable to that of existing methods.

9 Discussion
9.1 Eye-Tracking Performance and Interaction

Experience
On the smartphone mentioned in Section 4 with a resolution of
1200×2486, the typical icon layout is 4-column by 7-row. The offline
minimal gaze error computed from our dataset in Section 7.3 is 278.3
px (1.60 cm, 2.29°), enabling icon-level gaze selection and analysis
for a 4-column by 8-row layout. In contrast, the real-time minimal
gaze error computed in real-time conditions is 446.7 px (2.57 cm,
3.68°). While this only supports a 2-column by 5-row layout, it is still
sufficient for effective target selection using our method’s cursor
interaction. Although both methods show significantly improved
performance compared to the absence of calibration, the offline
performance is 37.8% better than the real-time performance. As
mentioned in Section 8.2, this discrepancy may be attributed to: (1)
significant posture changes caused by putting down and picking
up the smartphone, (2) the less stable camera footage caused by
swipe shakes and head movements, (3) the less amount of data for
fine-tuning.

9.2 Potential Exploration on Gaze Behavior
Although this study experimented with three different interaction
distances (200, 600, and 1200 px), no further investigation was con-
ducted into how these distances affect user behavior and, subse-
quently, the impact of data validity on model training performance.
We believe that future work could build upon this study to explore
these aspects. Furthermore, if interaction distances do influence
data validity (e.g., longer distances leading to more gaze-following
behaviors and providing more valuable data), we could adjust the
eye-tracking outcomes to guide users toward specific actions or
behaviors, enriching the data and ultimately improving model out-
comes.
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Project Year Devices Sensor Calibration Method Error(cm) Error(°)
COMETIC (offline) 2024 Mobile RGB Cursor interaction 16 cm 2.29◦
COMETIC (real-time) 2024 Mobile RGB Cursor interaction 2.56 cm 3.67◦
PACE (real-time) [21] 2016 PC RGB Interaction event 3.09 cm 2.56◦
GazeRefineNet (offline) [48] 2020 PC RGB Visual saliency 2.75 cm 2.49°
GazeL (offline) [47] 2021 Mobile RGB Touch event 1.58 cm -
vGaze (real-time) [68] 2021 Mobile RGB-D Image attention 1.51 cm -
iTracker (offline) [30] 2016 Mobile RGB Explicit calibrate with 13 points 1.34 cm -

Table 10: Empirical Comparison between COMETIC and Existing Methods

9.3 Impact of Content on Gaze Behavior in
Real-Time Interaction Scenarios

One of the key limitations of this study is that it does not thoroughly
explore how varying content backgrounds in real-life settings affect
gaze behavior during interaction and, subsequently, the accuracy
of our implicit calibration. Different types of content—whether
they are text-heavy interfaces, video playback, or interactive el-
ements—can lead to distinct attractions in eye movement during
cursor interaction.

However, as discussed in section 2, the use of a cursor in interac-
tive tasks provides constraint on the user’s gaze behavior, helping
to mitigate some of the unpredictability found in more natural,
unconstrained interactions. The presence of the cursor helps direct
the user’s attention toward specific areas of the interface, making
the eye movements more predictable and easier to model.

Moreover, from an interaction design perspective, there are sev-
eral strategies that could be employed to further reduce the influ-
ence of content on gaze behavior. For example, activating the cursor
could dim the areas outside its immediate surroundings, directing
the user’s attention more effectively toward the active region. This
approach minimizes distractions from other on-screen elements,
allowing for more consistent gaze behavior during cursor-based
interactions.

9.4 Limitation on Efficiency
The calibration method used in this study fundamentally involves
collecting additional training data and fine-tuning the eye-tracking
model. Compared to traditional calibration techniques, this in-
evitably presents efficiency challenges. Standard multi-point cali-
bration methods typically take around 30 seconds to 1 minute to
complete. In contrast, our approach requires significantly more
time. Utilizing an NVIDIA GeForce RTX 3090, each iteration of
model fine-tuning takes approximately 350 seconds, therefore five
rounds of interaction took roughly 30 minutes. This time could
further increase as more user data accumulates, making the process
increasingly time-intensive.

We believe that one of the primary reasons for the inefficiency
lies in the fact that the current model is still learning how to effec-
tively extract user-specific features during the fine-tuning phase,
rather than simply establishing a robust mapping between features
and gaze positions.

With advancements in computer vision, using existing models to
extract effective features tends to be a better solution. For example,
by using segmentation techniques, the eye region could be divided

into key areas such as the pupil, cornea, eyelids, and eyebrows,
which could then be parameterized and fed into the eye-tracking
model. In this approach, the dimensionality eye-tracking model’s
input is significantly reduced, and the model would only need to
focus on the mapping. This approach might even enable the use of
simpler machine learning methods to handle the mapping process,
thereby dramatically reducing the time required for calibration.

Another issue observed in our study is that, due to the inherent
differences in data distributions across users, the optimal meta-data
for achieving the best fine-tuning results may also vary significantly
between individuals. In this study, we used the same meta-data for
all participants, which likely contributed to the considerable varia-
tion in training outcomes. We believe that developing algorithms
capable of quickly adapting to personalized data, potentially by
leveraging the aforementioned feature extraction techniques, is an
important avenue for future research.

Despite the issues mentioned above, we still believe that im-
plicit calibration during interaction is more suitable than explicit
calibration. There are three main reasons for this:

(1) For eye tracking on mobile devices using cameras, frequent
calibration is often needed to maintain accuracy. If users are
required to perform explicit calibration frequently, it would
inevitably disrupt their normal use.

(2) The current fine-tuning process, which takes 350 seconds,
uses data from around 72 instances of cursor usage. We could
further reduce calibration time by fine-tuning with fewer
instances of cursor usage. As shown in Section 8.2, a smaller
amount of data reduces the training time, but at the cost of
lower eye-tracking accuracy. Identifying an optimal number
of cursor usage events for effective calibration is one of the
directions for future work.

(3) Advancements in hardware will further decrease the time
consumption for fine-tuning model.

9.5 Limitation on Privacy
The calibration method also introduces privacy issues, as fine-
tuning requires GPU processing, necessitating the upload of front-
camera data to the cloud. We believe there are two ways to mitigate
this issue:

(1) We could deploy a deep neural network model on the smart-
phone to encode the data from the front camera, and retrain
the models using encoded data as input. This method avoids
directly uploading videos containing user facial data to the
cloud.
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(2) As mentioned in Section 9.4, our method suffers from low
efficiency since it needs to achieve feature extraction as
well as mapping features to gaze positions simultaneously.
Utilizing a reliable feature extraction model may decrease
the number of parameters, potentially enabling full model
deployment on a smartphone.

10 Conclusion
In this paper, we presented COMETIC, an interaction-integrated
method for implicit, continuous eye-tracking calibration on smart-
phones. Our system leverages low-effort cursor interactions to col-
lect calibration data during cursor refinement on the smartphone.
By filtering valid cursor coordinates and using them as gaze posi-
tion proxies, our approach achieves unobtrusive calibration and
maintains eye-tracking accuracy during the interaction. Offline
evaluation on our dataset demonstrated a 27.2% improvement in
eye tracking accuracy, achieving a mean error of 278.3 px (1.60 cm,
2.29°). The real-time evaluation demonstrates a 50.0% improvement,
achieving a mean error of 446.7 px (2.57 cm, 3.68°). Future work
could further optimize the system by exploring the impact of con-
tent variability and efficiency, with the goal of enhancing real-time
performance in more complex situations.
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