
IEEE TRANSACTIONS AND JOURNALS TEMPLATE 1

Identification of Non-Restorative Sleep
Associated with Depression Using Ambulatory
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Abstract— Objective: Non-restorative sleep is prevalent
among individuals with depression and is strongly asso-
ciated with the severity of the condition. Therefore, iden-
tifying non-restorative sleep can aid in the early screen-
ing of depression. Investigating non-restorative sleep in
depression necessitates long-term monitoring under nat-
uralistic conditions. Methods: In this study, we recruited
149 participants and collected electrocardiogram and tri-
axial acceleration from them, resulting in a total of 761
nights of data. The period from midnight to 6:30 AM was
segmented into 78 five-minute intervals, from which 40
physiological features were extracted for each interval. To
deal with variations in sleep patterns across participants
and dates, we reordered the sleep data based on levels
of parasympathetic nervous system (PNS) activation to ex-
plore the underlying neural mechanisms of non-restorative
sleep in individuals with depressive symptoms. Results:
We developed a model that integrated convolutional neural
networks with an attention mechanism to identify non-
restorative sleep in individuals with depressive symptoms.
The model demonstrated impressive performance on an
independent test set, achieving an accuracy of 81.25% and
an F1 score of 77.85%. Additionally, Bayes’ theorem was
used to compute the posterior probability indicating non-
restorative sleep in this population, assessing abnormal
PNS activation. Conclusion: Finally, we designed a system
capable of automatically evaluating nighttime sleep status
and quantifying changes in non-restorative sleep associ-
ated with depression. Significance: This system offers a
novel tool and method for the early identification of indi-
viduals at risk of depression.

Index Terms— Parasympathetic Nervous System; De-
pression; Non-Restorative Sleep; Machine Learning; De-
pressive Symptom Evaluation

I. INTRODUCTION

DEPRESSION is a prevalent disorder frequently co-
occurring with various mental and physical conditions,

ranking among the top ten global diseases. The estimated

• Wanhui Wen is the corresponding author.
• Li Liu, Guangyuan Liu, Wanhui Wen are with the Chongqing Key

Laboratory of Generic Technology and System of Service Robots,
Chongqing Key Laboratory of Nonlinear Circuits and Intelligent In-
formation Processing, and the College of Electronic and Information
Engineering, Southwest University, Chongqing, 400715, China (e-mail:
2534997991@qq.com, liugy@swu.edu.cn, cwenwanh@swu.edu.cn).
Chongyang Wang is with the Key Laboratory of Rehabilitation Medicine
in Sichuan Province, Department of Rehabilitation Medicine, and Insti-
tute of Rehabilitation Medicine, West China Hospital, Sichuan University,
Chengdu, 610041, China (e-mail: mvrjustid@gmail.com).

prevalence of major depressive disorder in the general pop-
ulation ranges from 4.4% to 20% [1]. Despite advancements
in treatment, many depressed individuals, particularly younger
populations, continue to experience inadequate relief from
existing psychological and pharmacological interventions [2],
[3]. Furthermore, progress in early intervention for depression
remains insufficient due to the inconvenient early screening
of depression in the general population [2], [3]. Commonly
used depression screening tools, such as the Beck Depression
Inventory, Patient Health Questionnaire-9, and Self-Rating
Depression Scale (SDS), rely on active self-reporting. These
tools are not ideal for frequent, short-term assessments, thus
highlighting a need for more convenient daily-use instruments.

Studies have shown that different subtypes of depression
exhibit varying degrees of circadian rhythm disturbances, man-
ifesting as abnormal sleep-wake cycles, extended sleep dura-
tion, non-restorative sleep (NRS), excessive daytime inactivity,
and irregular sleep onset and offset time [4]–[7]. Sleep distur-
bances are prominent in patients with circadian rhythm-related
depressive symptoms [8]–[10], with approximately 90% of
depressed patients experiencing sleep issues such as insomnia,
NRS, hypersomnia, and narcolepsy [11], [12]. Among these,
NRS is notably prevalent [13]. NRS is typically characterized
by a subjective sense of unrefreshing sleep upon awakening,
often resulting from poor sleep quality or restlessness [14].
This type of impaired sleep can exacerbate daytime anxiety or
depressive symptoms [15], [16], significantly affecting overall
mental health [17], and may even lead to suicidal ideation
[18].

Improving sleep quality has been linked to remission and
recovery from depression, with evidence suggesting that ad-
dressing insomnia can prevent both the onset and recurrence
of depressive episodes [19]. The connection between NRS
and circadian rhythm disruptions provides a crucial entry
point for early screening of specific depressive symptoms
[20]. Identifying individuals with depressive NRS can facil-
itate early detection and intervention. Monitoring the neuro-
physiological mechanisms underlying depressive NRS enables
targeted regulation of the biological clock, potentially reducing
the occurrence of NRS and, consequently, the severity and
recurrence of depressive symptoms.

There is a growing interest in using resting-state EEG
signals to explore sleep status in depressed individuals [21]–
[23]. Although comparing sleep stages of depressed and non-
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depressed individuals can yield valuable insights, the practical
application of EEG is limited by the stringent experimental
controls required and the high cost of EEG equipment, which
is not feasible for general household use. In contrast, ECG
data collection is more accessible and cost-effective. The R
wave to R wave (RR) interval in ECG signals, reflecting heart
rate rhythm controlled by both sympathetic and parasympa-
thetic branches of the autonomic nervous system [22]–[26],
presents a reliable method for exploring sleep characteristics
in individuals with depression [24], [25].

Existing research often focuses on diagnosed patients with
depressive disorder and fails to address early screening before
symptom exacerbation, particularly overlooking NRS associ-
ated with circadian rhythm disruptions [27]. Moreover, data
collected in controlled laboratory or hospital settings may not
accurately reflect real-world conditions [26]. The variability in
sleep conditions across individuals and dates poses challenges
for comparability.

Given the critical role of deep sleep in brain metabolism
recovery and neural stability [28], [29], as well as the pre-
dominance of parasympathetic activity during this sleep phase
[30], this work proposes aligning sleep conditions across
different individuals and nights based on parasympathetic
nervous system (PNS) activation levels, as reflected by high-
frequency features in heart rate variability (HRV). We further
introduce a model designed to identify NRS in individuals
with depression by analyzing nocturnal physiological data.
This model provides a tool for recognizing individuals with
circadian rhythm-related depressive symptoms. Additionally,
Bayes’ theorem was applied to compute the posterior proba-
bility of NRS status, thus quantifying the impact of circadian
rhythm-related depression. Finally, we developed a system
capable of automatically identifying and quantifying NRS
in individuals exhibiting circadian rhythm-related depressive
symptoms.

II. MATERIALS AND METHODS

This section provides a detailed account of the data col-
lection process, preprocessing steps, and the specific tech-
niques employed for feature extraction and statistical analysis.
We outline the comprehensive approach used to assess non-
restorative sleep associated with depression (NRSD). Ad-
ditionally, we describe the machine learning methodologies
utilized to identify NRSD and explain the application of
Bayes’ theorem to compute posterior probabilities, thereby
quantifying the extent of abnormal nocturnal PNS activity
within the NRSD population.

A. Assessment of NRSD

We utilized the SDS [31] to assess depressive symptoms of
the participants. SDS comprises 20 items, each rated on a four-
point scale reflecting the frequency of symptoms. According to
Chinese norms [32], [33], a standard SDS score of 53 points
serves as the cutoff for depression: scores ranging from 53
to 62 indicate mild depression, 63 to 72 indicate moderate
depression, and scores above 73 indicate severe depression.

Participants’ sleep quality on the night of data collection
was rated on a scale from 1 to 5, with 1 indicating poor
sleep quality and 5 indicating excellent sleep quality. Higher
scores correspond to better sleep quality. Scores of 1-2 are
considered indicative of NRS, while scores of 4-5 are classified
as restorative sleep. Due to the subjective nature of this rating,
a score of 3 is interpreted as reflecting uncertain sleep quality.

Each participant completed the SDS scale twice: once at
the beginning of physiological data collection and once at
the end. Additionally, participants kept a daily activity log,
recording their sleep and wake time. Participants whose SDS
scores exceeded 53 in both assessments and who reported poor
sleep quality (scoring 1–2 points) on at least four nights per
week were categorized as ’with NRSD’. The control group
consisted of three subgroups: 1. Participants whose SDS scores
were consistently below 53 in both assessments and who
reported normal sleep quality (scoring 4–5 points) on at least
four nights per week (normal subgroup). 2. Participants whose
SDS scores were higher than 53 in both assessments but who
reported normal sleep quality (scoring 4–5 points) on at least
four nights per week (subgroup with depression but no NRS).
3. Participants whose SDS scores were below 53 in both
assessments but who reported poor sleep quality (scoring 1–2
points) on at least four nights per week (subgroup with NRS
but no depression).

B. Data Collection
We recruited 149 undergraduate and graduate students from

Southwest University for data collection. Participants had no
history of heart disease or mental illness and did not use nerve
stimulants, depressants, or sleep-related medications during
the study. All participants provided informed consent prior to
the experiment. Among these participants, 48 took part in two
data collection sessions spaced three to six months apart, with
27 showing changes in their condition between sessions.

Prior to physiological data collection, participants com-
pleted the SDS scale to assess their depressive symptoms. Fol-
lowing this initial assessment, we collected ambulatory ECG
and tri-axial accelerometer (T-ACC) data over several days,
along with participants’ daily self-reports of sleep quality. On
the final day of the experiment, participants completed the
SDS scale again for a follow-up assessment of depressive
symptoms.

Data collection was conducted using Shimmer3 devices,
which recorded ECG and T-ACC data synchronously at a
sampling frequency of 512 Hz. The Shimmer3 device was
attached to participants’ waists with an elastic band, and
five silver chloride electrode patches were placed on their
chests following the Shimmer3 user manual. The Vx lead was
selected for subsequent data analysis due to its higher R-wave
amplitude, facilitating accurate R-wave peak detection.

Throughout the data collection period, participants were free
to engage in their usual daily activities without restrictions,
allowing them to work and rest according to their own sched-
ules and preferences. To mitigate data quality issues related to
electrode failure, participants were advised to avoid excessive
sweating from vigorous exercise. Finally, we successfully col-
lected ECG and T-ACC data from 149 participants over a total

This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBME.2025.3528386

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: SICHUAN UNIVERSITY. Downloaded on April 23,2025 at 02:21:28 UTC from IEEE Xplore.  Restrictions apply. 



AUTHOR et al.: TITLE 3

TABLE I: Details of data collection

Label Ns Nd Ns f Nd f Ns m Nd m

With NRSDE 72 318 40 180 32 138
NormalC1 73 316 45 202 28 114
With depression but no
NRSC2

22 91 9 36 13 55

With NRS but no
depressionC3

9 36 3 11 6 25

E: experiment group; C1, C2 and C3: three control subgroups; Ns: total
number of subjects; Nd: total number of days of data collection; Ns f :
number of male subjects; Nd f : number of days of data collection
for male subjects; Ns m: number of female subjects; Nd m: number
of days of data collection for female subjects. Forty-eight participants
took part in a follow-up session of data collection, and 27 of them were
marked with different labels in two sessions of data collection.

of 761 days. Using the methodologies from the literature [34],
we performed an initial quantification of the subjects’ phys-
iological circadian rhythms, followed by a post-measurement
follow-up. Based on our quantitative assessments, participants
evaluated their daytime states in relation to the restorative
impact of nighttime sleep, specifically reporting on morning
fatigue, low energy, and excessive daytime sleepiness. Fol-
lowing the post-test follow-up, and based on self-reported
SDS and sleep quality scores, we categorized the data into
an experimental group and three control subgroups, as shown
in Table I.

C. Physiological data preprocessing and Feature
Extraction

We employed the wavelet decomposition and reconstruction
method, as proposed in [35], to remove baseline drift from
the ECG data and low-frequency trends from the T-ACC data.
Subsequently, we applied an adaptive running window method
[35] to automatically calculate RR intervals. Specifically, we
set a dynamic running window length to be 1.3 to 1.5 times
the previous normal RR interval. Within this window, the max-
imum value in the baseline-corrected ECG data was identified
as the R-peak, and the time difference between consecutive
R-peaks was computed to determine the RR interval. After
obtaining the RR interval series in seconds, we converted it
to a heart rate (HR) time series in beats per minute using
the formula HR=60/NN, where NN represents the normal RR
intervals, obtained by excluding occasional intervals caused
by premature beats and their subsequent compensatory pauses
from the RR interval series. These intervals were automatically
removed during the fourth preprocessing step, as shown in
Figure 1. Afterward, an experienced ECG technician reviewed
the RR interval series and manually removed any remaining
abnormal intervals, which were typically few in number.

Additionally, we processed the acceleration data by averag-
ing the three-axis data (after removing low-frequency trends)
to produce a composite signal, denoted AT-ACC, as illustrated
in Figure 1.

We define the sleep start time as the point when a marked
change in the amplitude pattern of AT-ACC data occurs,
which is further verified given the self-reported start of sleep
to avoid outlier mistakes. Similarly, the sleep end time is

defined as the point when the AT-ACC amplitude pattern
shifts significantly near the self-reported end of sleep. As
illustrated in Figure 2, the AT-ACC data show substantially
lower amplitude values and reduced spike density during sleep
period compared to active periods. The sleep start and end
timestamps are independently determined by an experienced
AT-ACC data processing technician and subsequently reviewed
and confirmed by another equally experienced technician. We
calculated the participants’ sleep onset and wake-up time, as
illustrated in Figures 3 and 4. The majority of participants’
sleep periods occurred between 00:00 and 06:30, aligning
with typical physiological nocturnal rhythms as indicated by
previous research [36]. Accordingly, our data analysis focused
on this time frame, which we divided into 78 five-minute time
slots. Within each slot, we extracted 36 HRV features and 4
AT-ACC features to assess participants’ autonomic nervous
activity and physical movement. This yielded a structured
data matrix sized 40 × 78, where each row represented a
physiological parameter and each column corresponded to a
time slot. Specific details of the 40 physiological features are
provided in Table II.

Given the variability in nighttime sleep duration across
different populations and dates, aligning sleep stages for
comparison presents a challenge. Several studies [37]–[39]
underscore the role of the PNS in maintaining body home-
ostasis and improving insomnia and sleep quality. Moreover,
the ’HF’ feature listed in Table II has been demonstrated to
reflect PNS activation [40]–[42]. Therefore, we sorted the 78
time slots from 00:00 to 06:30 based on the ’HF’ feature values
in descending order. This approach aims to reduce errors
stemming from sleep stage misalignment during nocturnal
periods, facilitating comparison between the NRSD group and
the normal group based on PNS activation levels. Figure 5
illustrates the distribution of HF feature values within a single
time slot for the NRSD group and the normal group. The
distribution for the NRSD group is notably skewed towards
the lower end, indicating reduced PNS activation compared to
the normal group.

D. Statistical Testing of Physiological Feature in Each
Time Slot

The objective of the statistical analysis is to identify inter-
group differences in physiological features between the NRSD
group and the normal group. Given that the distribution of
physiological feature values across most time slots did not
conform to normality assumptions, we employed the non-
parametric Mann-Whitney U test for analysis. Our null hy-
pothesis posits that there are no significant differences in
physiological feature values between the NRSD group and the
normal group within specific time slots.

To visually represent the distribution of each physiological
feature, we used box plots, with color coding to indicate
statistical significance levels. Specifically, a pink color denotes
a significance level of 0.001 < P ≤ 0.05, while a white color
indicates P > 0.05. The P-value reflects the likelihood of the
null hypothesis being true.

After identifying physiological features with significant
inter-group differences through statistical testing, we employed
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Load Raw ECG and T-ACC

Eliminate ECG baseline shifts 
and T-ACC's low-frequency 
part, then compute AT-ACC

Automatically determine the 
RR interval sequence using an 

adaptive window length 
approach

Automatically eliminate 
abnormal RR intervals due to 

interference and device 
updates through empirical 

threshold of HRV

Convert RR interval into 
heartbeats 

per minute and obtain the heart 
rate data

Fig. 1. Flowchart and illustrative results of ECG and T-ACC data preprocessing

Fig. 2. AT-ACC data indicative of sleep onset and offset. The
subject reported going to bed at 02:40 and waking up at 07:30.
However, AT-ACC data indicated a sleep onset at 03:43 and
a sleep offset at 07:30.

Bayesian theory to calculate the posterior probability of a
specific observation sample belonging to the NRSD group, in
order to assess the severity of NRSD symptoms in that sample.
Specifically, for the ’HF’ feature within a particular time
slot, we used the Kernel Density Estimation (KDE) function
[55] to fit the probability density distributions of the samples
from the NRSD group and the normal group, as shown in
Figure 5. These fitted distributions were then respectively used

in formula (1) to compute the posterior probabilities of the
current sample belonging to each group in that time slot.

P̂ (G = j |HF = x0) =
π̂j f̂j(x0)∑2

k=1 π̂kf̂k(x0)
(1)

Where f̂k(x0) is the KDE value of category k(k = 1, 2) for
a given value x0 of the ‘HF’ feature, and the values 1 and 2
of k corresponds to the categories ‘with NRSD’ and ‘normal
group’. π̂k(k = 1, 2) means the estimation of prior probability
for category k, which is empirically set to be 0.5 for each of
the categories. P̂ (G = j | HF = x0) is the estimation of
posterior probability of the current sample’s category G being
j (j = 1 or 2) under the condition of HF = x0.

According to Formula (1), the sum of P̂ (G = 1|HF = x0)
and P̂ (G = 2|HF = x0) equals 1. Therefore, if P̂ (G =
1|HF = x0) exceeds 0.5, it indicates that the sample is
more likely to belong to the group with NRSD. Conversely, if
P̂ (G = 1|HF = x0) is below 0.5, it suggests that the sample
is more likely to belong to the normal group.

E. Deep Learning Approach for NRSD Recognition
In this study, we employed a neural network model named

CNN ECAnet to classify data samples from individuals with
and without NRSD. The core architecture of CNN ECAnet
comprises a Convolutional Neural Network (CNN) and an
Efficient Channel Attention (ECA) layer, followed by a Fully
Connected Neural Network (FCNN) with four fully connected
layers.

Initially, the input data, a 40×78 matrix representing a
full night’s physiological feature values, is processed by the
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Fig. 3. Distribution of participants’ sleep onset time Fig. 4. Distribution of participants’ wake-up time in the morning

TABLE II: Physiological parameters as features for NRSD analysis

Feature name Feature description Relation with activities

SDRR Standard deviation of RR interval Measuring activities of SNS and PNS, mainly the
activity of SNS [43]

RMSSD RR Interval Difference Root Mean Square Measuring activities of PNS [44]
Ave Average of RRIS Reflecting average level of ANS activity [45]
Var Variance of RRIS –
CVrr Heart rate coefficient of variation Reflecting the total tension of ANS activity [46]
SDAFD, MAFD, SDFD Standard deviation of the absolute value of the first-order derivative

of the RR interval [47]; Average of the absolute first-order differences
of RRIS [47]; Standard deviation of the first-order difference of RRIS
[47]

–

PNN50, PNN40, PNN30
PNN20, PNN10

Percentage of the absolute differences between two adjacent normal
RRI greater than 50, 40, 30, 20, 10 milliseconds

Measuring activities of PNS [43], [45], [48]

Fractality The range between the maximum and minimum absolute local maxima
in the wavelet coefficients of the RR interval sequence.

–

FD Fractal dimension Measuring the complexity of ANS activity [49]
PE, SampEnVal, Disten Entropy of a permutation [50]; Sample entropy [51]; Conditional

entropy [52]
Measuring activities of ANS

SD1, SD2, Cn, CCM SD1, SD2, Cn and CCM indices of Poincare plots of RRIS Short- and long- term HRV indicators to measure the
volatility of ANS activity [53]

HR Heart rate Measuring the activity of PNS
RR mod Mean deviation of RR intervals relative to the mean value Measuring the activity of PNS
HF1, HF2 Mean value of power spectral density greater than the median between

0.2 Hz and 0.25 Hz [36]; Mean value of power spectral density greater
than the median between 0.25 Hz and 0.35 Hz [36]

Measuring the activity of PNS

LF1 Mean value of power spectral density greater than the median between
0.08 Hz and 0.12 Hz [36]

Mainly reflecting the activity of SNS

F1(n), F2(n) Average fluctuation coefficients respectively in small scales n=1, 2, ...,
10; Average fluctuation coefficients respectively in large scales n=30,
31, ..., 50

Measuring the fluctuations of RRIS at lag scales n,
reflecting the complexity of ANS activity [48]

RLHE 3 The third smallest of all negative peaks in the first-order difference of
the local Hurst exponent of the RR interval sequence

Measuring the complexity of RRIS controlled by
SNS and PNS competition [35]

LF, HF, AF Power of the RRIS in 0.04-0.15 Hz calculated by Lomb-Scargle
algorithm; Power of the RRIS in 0.15-0.4 Hz calculated by Lomb-
Scargle algorithm; Power of the RRIS in 0.04-0.4 Hz

Mainly reflecting the activity of SNS [54], Measuring
the activity of PNS [54], Measuring the total activity
of ANS [54]

LF/HF, LF/AF, HF/AF Ratio of LF and HF; Normalized LF; Normalized HF Reflecting balance between SNS and PNS [43],
Proportion of SNS activity in total ANS activity [45],
Proportion of PNS activity in total ANS activity [45]

Sport SDNN, Sport AVE
Sport theta, Mean fxyz

Standard deviation, Mean, Variance of AT-ACC, and Mean of AT-ACC
greater than the median

–

RRIS: RR interval series; ANS: autonomic nervous system; SNS: sympathetic nervous system; PNS: parasympathetic nervous system; PSD: power spectral
density.
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Fig. 5. Probability density and KDE of the ‘HF’ feature in a
single time slot

CNN, which includes a two-dimensional convolutional layer
with 8 filters of size 2×2, designed to capture multi-level
and spatially diverse features. The subsequent ECA layer
enhances the model’s ability to prioritize critical features,
thereby supporting improved classification performance.

Following these stages, the data enters the FCNN compo-
nent. The 40×78 matrix is first flattened into a one-dimensional
vector. To reduce overfitting, a Dropout layer with a rate of 0.2
is applied immediately after the input layer. The model then
progresses through three Dense layers, each utilizing Scaled
Exponential Linear Unit activation functions. The first hidden
layer contains 80 neurons, followed by Batch Normalization to
enhance training stability and speed. The second hidden layer
has 64 neurons, while the third contains 30 neurons, with an
additional Batch Normalization layer applied after these Dense
layers. The architecture concludes with a Dense output layer
containing two neurons, equipped with a softmax activation
function to classify data into the ’with NRSD’ and ’without
NRSD’ categories. The model structure is shown in Figure 6.

To ensure robust model generalization, we randomly parti-
tioned the dataset into training, validation, and test sets with
a 6:2:2 ratio. We ensured that data from the same participant
was confined to a single dataset to prevent data leakage and
overfitting. Model parameters were optimized based on the
accuracy on the training set, while the training process was
terminated when the accuracy on the validation set reached
the maximum. Then, the trained model corresponding to the
highest validation accuracy was tested on the test set to assess
its generalization capability.

III. RESULT

This section provides detailed results of the statistical anal-
yses and machine learning techniques employed to identify
NRSD conditions and quantify symptom severity.

A. Effects of NRSD on Physiological Features

In addition to the ’HF’ feature in Figure 7, Figures 8 and
9 present box plots for the ’MAFD’ and ’pNN50’ features,
which highlight significant inter-group differences between
the NRSD group and the normal group. The colored box
plots indicate that, during phases of moderate to high PNS
activation, the NRSD group demonstrates significantly lower
PNS activation compared to the normal group. However, in
phases of low PNS activation, the differences between the two
groups become less pronounced.

B. Binary Classification of Samples Labeled as ‘with
NRSD’ and ‘without NRSD’

Table III presents the performance metrics of the
CNN ECAnet model for binary classification of samples la-
beled as ’with NRSD’ and ’without NRSD’. To assess the
impact of each model component, we conducted an ablation
study, demonstrating that the inclusion of CNN and ECA
layers significantly enhances the performance of CNN ECAnet
compared to the standalone FCNN. Additionally, we per-
formed the same binary classification using a classical Linear
Discriminant Classifier (LDC). Table III also summarizes the
performance metrics for the component-ablated models and
the LDC model. The results show that the FCNN outperforms
the LDC, indicating that a neural network model is better
suited for NRSD detection. Furthermore, the models with
component ablation exhibit decreased performance relative
to CNN ECAnet, underscoring the importance of integrat-
ing CNN and ECA components within the FCNN architec-
ture. Table III shows that the false positive rate (FPR) of
CNN ECAnet is substantially higher than its false negative rate
(FNR), indicating that while the model effectively detects true
NRSD, its accuracy is impacted by false detection of NRSD.
Since the ’without NRSD’ category includes diverse sub-
groups—specifically, normal samples, samples with depression
but no NRS, and samples with NRS but no depression—we
further calculated the FPRs for each of these subgroups. The
FPRs were 19.31%, 33.33%, and 75% for the ’normal’, ’with
depression but no NRS’, and ’with NRS but no depression’
groups, respectively. That is, the Fl score for differentiating
’with NRSD’ from ’normal’ is 83.02%.

C. Severity Quantification of NRSD Using Posterior
Probability

As illustrated in Figure 10, we calculated the mean and
standard deviation of the posterior probability of NRSD for
each time slot, comparing subjects with NRSD to those labeled
as normal. The results indicate that subjects with NRSD ex-
hibited significantly elevated posterior probabilities of NRSD,
all exceeding 0.5, during periods likely associated with deep
sleep, when PNS activation is moderate to high. In contrast,
subjects without NRSD displayed notably lower posterior
probabilities of NRSD, generally below 0.5, during phases of
moderate to high PNS activation, suggesting restorative sleep.
At lower levels of PNS activation, the posterior probabilities of
NRSD for both groups tended to converge. Given that awake
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Fig. 6. CNN ECAnet model structure

Fig. 7. Box plots of the ‘HF’ feature in the 78 nocturnal time slots

Fig. 8. Box plots of the ‘PNN50’ feature in the 78 nocturnal time slots
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Fig. 9. Box plots of the ‘MAFD’ feature in the 78 nocturnal time slots

TABLE III: Performance Metrics of Different Models

Model name FPR FNR Acc Prec Spec Sens F1

LDC 40.35% 41.94% 59.09% 43.90% 59.65% 58.06% 50.00%
FCNN 33.33% 12.90% 73.86% 58.69% 66.66% 87.09% 70.12%
CNN 28.80% 14.06% 76.19% 60.43% 71.20% 85.94% 70.96%
CNN ECAnet 25.43% 6.40% 81.25% 66.66% 74.56% 93.54% 77.85%

Samples from individuals with NRSD were the positive ones, and those from individuals without NRSD were the negative ones. FPR: false positive rate;
FNR: false negative rate; Acc: ratio of correctly detected positive and negative samples to total samples; Prec: ratio of correctly detected positive samples
to totally detected positive samples; Spec: ratio of correctly detected negative samples to total negative samples; Sens: ratio of correctly detected positive
samples to total positive samples; F1: 2(Prec × Sens)/(Prec + Sens).

Fig. 10. Posterior Probabilities of NRSD calculated for two
groups in 78 nocturnal time slots

and light sleep states correspond to lower PNS activation
compared to deep sleep [56], [57], these findings suggest that
the restorative effect of sleep is primarily determined by the
level of PNS activation during deep sleep.

D. A System for Automatic Analysis of NRSD

We developed an automated system for identifying NRSD
and quantifying symptom severity, as illustrated in Figure 11.

This system provides an efficient and non-invasive approach to
sleep monitoring, covering signal acquisition, data preprocess-
ing, feature extraction, and NRSD analysis. Signal acquisition
is carried out using Shimmer devices, which capture HRV
through ECG signals, or wearable watches that collect HRV
data via photoplethysmography. The physiological data is
then uploaded to a computer for NRSD analysis using the
methodologies outlined in our research. The system enables
users to access historical data by entering a username. Selected
data are analyzed using the trained CNN ECANet model
and the posterior probability method described in our work,
offering a detailed measure of NRSD for the chosen night, as
depicted in Figure 11.

IV. DISCUSSION

Although NRSD is common among individuals with depres-
sive symptoms, practical methods for daily NRSD screening
using wearable sensing technology have been limited. This
study presents a novel model, CNN ECAnet, which leverages
ECG and T-ACC signals to identify individuals with NRSD.
Compared to prior models that detect MDD in daily life
with a best-case FPR of 45% and an FNR of approximately
40% using deep learning on actigraphy data [58] and an F1
score of 81.9% using sleep photoplethysmography data [59],
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Fig. 11. Concept architecture of a system for automatic identification of NRSD

CNN ECAnet demonstrates superior performance in detecting
the specific symptom of NRS associated with depression. This
model effectively distinguishes subject-independent samples
due to two primary features.

First, to enhance data comparability across different sam-
pling dates and individuals, we aligned data based on PNS
activation levels. This approach eliminates the need for med-
ical professionals to perform sleep staging, as was necessary
in previous studies. Second, CNN ECAnet incorporates an
attention mechanism that selectively highlights critical fea-
tures, allowing for precise quantification of neurophysiological
activity related to NRSD. This model not only detects the pres-
ence of NRSD but also quantifies inadequate PNS activation
using Bayesian posterior probabilities, providing an objective
measure of NRSD severity through detailed visualization of
PNS activation levels across nocturnal time slots.

Statistical tests conducted in this study revealed that, during
expected moderate-to-high PNS activation periods, individuals
with NRSD showed reduced HRV and lower PNS activation
compared to those without NRSD. Given the established rela-
tionship between PNS activation and sleep quality and restora-
tive capacity [60]–[62], these findings suggest that depression
may impair the self-repair function of sleep, consistent with
prior research [63]–[66]. This impairment could exacerbate
psychological and physiological issues during waking hours
in individuals with NRSD, emphasizing the importance of
enhancing restorative sleep to alleviate depressive symptoms
and improve overall health.

In this study, a small proportion (9 out of 149) of par-
ticipants exhibited NRS on at least four nights per week
without concurrent depression. These cases present challenges

to CNN ECAnet’s accuracy, resulting in a higher FPR (75%)
for this group. However, as NRS is a known risk factor
for various mental and physical health conditions, including
depression, such false positives may still be valuable for early
screening and intervention.

Considering the relatively high FPRs for individuals with
depression but no NRS and those with NRS but no depression,
a practical application sequence for NRSD monitoring could
be as follows: First, if CNN ECAnet detects NRSD persisting
for over two weeks, individuals would be advised to seek
an expert consultation. During this consultation, individuals
would report symptoms related to NRS, while experts could
objectively evaluate these symptoms by reviewing posterior
probabilities of NRSD over the preceding two weeks. Finally,
during treatment, the change in posterior probabilities of
NRSD would be monitored to assess the alleviation of NRS.

This study has the following limitations. The physiological
dataset’s sample size was insufficient for more complex deep
learning techniques, which require extensive training data. Ad-
ditionally, data collection was restricted to university students
and postgraduates aged 18-25, limited the age and occupation
diversity of the subjects. Furthermore, the data acquisition de-
vice used had a sampling rate of 512 Hz, whereas commercial
wearable PPG devices typically have a sampling rate of 100
Hz. Thus, further validation with data from wearable PPG
devices is necessary before practical implementation.

V. CONCLUSION

This work proposed a machine learning model for ef-
fectively identifying NRSD using ECG and T-ACC signals.
This model captured critical neurophysiological and physical
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activity features, offering quantitative insights into restorative
effects of sleep via a graphical user interface. By leveraging
physiological data that are more readily available in daily
life, our model provides a novel and practical tool for NRSD
evaluation.
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