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A B S T R A C T   

The ability of humans to discern facial expressions in a timely manner typically relies on distributed face- 
selective regions for rapid neural computations. To study the time course in regions of interest for this pro-
cess, we used magnetoencephalography (MEG) to measure neural responses participants viewed facial expres-
sions depicting seven types of emotions (happiness, sadness, anger, disgust, fear, surprise, and neutral). Analysis 
of the time-resolved decoding of neural responses in face-selective sources within the inferior parietal cortex (IP- 
faces), lateral occipital cortex (LO-faces), fusiform gyrus (FG-faces), and posterior superior temporal sulcus 
(pSTS-faces) revealed that facial expressions were successfully classified starting from ~100 to 150 ms after 
stimulus onset. Interestingly, the LO-faces and IP-faces showed greater accuracy than FG-faces and pSTS-faces. 
To examine the nature of the information processed in these face-selective regions, we entered with facial 
expression stimuli into a convolutional neural network (CNN) to perform similarity analyses against human 
neural responses. The results showed that neural responses in the LO-faces and IP-faces, starting ~100 ms after 
the stimuli, were more strongly correlated with deep representations of emotional categories than with image 
level information from the input images. Additionally, we observed a relationship between the behavioral 
performance and the neural responses in the LO-faces and IP-faces, but not in the FG-faces and lpSTS-faces. 
Together, these results provided a comprehensive picture of the time course and nature of information 
involved in facial expression discrimination across multiple face-selective regions, which advances our under-
standing of how the human brain processes facial expressions.   

1. Introduction 

Facial expressions signal important emotional information (Ekman., 
1993). They are processed in a rapid and seemingly automatic fashion, 
as indexed by neural responses, for the regulation and facilitation of 
social interactions (Tracy and Robins, 2008). Haxby and colleagues 
(2000) proposed an influential hierarchical face perception model. They 
identified the posterior superior temporal sulcus (pSTS) along the lateral 
visual pathway (Pitcher and Ungerleider, 2021) as being responsible for 
processing changeable aspects of faces, such as expression, eye-gaze, 
and lip movements. The authors also indicated that the fusiform face 

area (FFA), based on inputs from the occipital face area (OFA), within 
the ventral pathways, encodes invariant aspects, such as face identity. 
Subsequently, revised models of face perception have suggested that 
facial expressions are processed in FFA (Bernstein and Yovel, 2015) and 
in several distributed and interacting regions (Duchaine and Yovel, 
2015), including the OFA, FFA, and pSTS. Additional evidence based on 
higher than chance-level classification accuracy has further confirmed 
the functional role of the OFA, FFA, and pSTS in facial expression pro-
cessing (Liang et al., 2017). 

Besides the ventral and lateral pathways, the inferior parietal (IP) 
cortex, which receives input from the occipitoparietal cortex (Kravitz 
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et al., 2011; Pitcher and Ungerleider, 2021), also plays a role in facial 
expression and face recognition as part of the dorsal pathway. By 
analyzing the functional connectivity patterns of the right FFA, the left 
IP cortex was also considered to form the distributed cortical network 
model for face processing (Li et al., 2009). Baroni’s study, utilizing 
intracranial electrodes to decode faces, discovered that, in addition to 
the superior temporal sulcus (STS) and FFA, certain electrodes in the 
bilateral IP were capable of successfully classifying faces (Baroni et al., 
2017). Furthermore, two lesion studies have demonstrated that damage 
to the IP region directly affects facial expression recognition (Adolphs 
et al., 1996, 2000). Neuroimaging research has also revealed that the 
activation of the bilateral IP lobule is significantly stronger for facial 
expression processing than for gender recognition (Johnston et al., 
2013; Sarkheil et al., 2013). Additionally, the gray matter volume of 
bilateral STS and the right IP was associated with facial expression 
decoding (L. Zhang et al., 2016). These studies suggest that the IP region 
is not only sensitive to faces but also contributes to processing facial 
expressions. 

Despite these advances, the temporal properties of facial expression 
discriminating in each of these identified regions remain rather unclear. 
A meta-analysis suggested that the N170 amplitude is reliably modu-
lated by emotional faces relative to neutral ones (Hinojosa et al., 2015). 
There is also evidence that the component reflects at least some form of 
facial structure processing instead of emotional concepts (Han et al., 
2021). In contrast to univariate methods, multivariate pattern analysis 
(MVPA) considers the relationship among multiple variables (e.g., 
channels in M/EEG data and voxels in fMRI data), which can enhance 
the sensitivity of identifying differences among experimental conditions 
(Grootswagers et al., 2017; Norman et al., 2006). A few recent studies 
have employed more sensitive multivariate methods to investigate the 
temporal dynamics of face and expression processing (Ambrus et al., 
2019; Dima et al., 2018; Li et al., 2022; Muukkonen et al., 2020; Smith 
and Smith, 2019). It has been reported that the neural representations of 
emotional faces appeared in the right temporalparietal regions and right 
frontal regions at 130 ms after the stimulus onset (Li et al., 2022). 
However, the spatial source of EEG decoding depends on input from 
multiple neighboring sensors, thus localization is limited by spatial 
resolution. By combining EEG and fMRI, Muukkonen et al. (2020) found 
that facial expression processing began in the primary visual cortex at 
approximately 130 ms, extending to the left fusiform face complex, 
lateral occipital, and temporal-parietal-occipital junction at 190 ms 
onwards. Because their correlation analysis of EEG and fMRI data 
included both emotional intensity and category of facial expression, the 
results may not reflect the spatiotemporal process of facial expression 
discrimination. Using whole-brain decoding of emotional expression in 
source space, Dima et al. (2018) discovered that information related to 
expression discrimination was traced from the visual cortex at 100 ms to 
higher-level temporal and frontal areas at 200–500 ms. The temporal 
process of expression decoding was averaged over time using 100 ms 
time window, which hindered more precise characterization. The 
contribution of expression decoding in each region was assessed based 
on the classifier weight instead of the decoding accuracy. However, 
multivariate classifiers may exhibit large weights at channels that do not 
pick up the signals of brain activity, as well as small weights at channels 
containing the signal (Haufe et al., 2014). Thus, a main purpose of our 
study was to investigate the precise temporal course of regions of in-
terest in facial emotional discrimination. 

Apart from the lack of knowledge about the temporal course of facial 
expression discrimination in the above-identified regions, we also know 
very little about the nature of information in these regions. In the field of 
computer vision, convolutional neural networks (CNNs) are among the 
best-performing models on object recognition, achieving human per-
formance levels in object categorization (He et al., 2016; Krizhevsky 
et al., 2017). Like human vision, the features in each layer of CNNs 
exhibit the nature of hierarchical visual representation. Lower layers 
respond to local corners, edges, and color conjunctions, while higher 

layers represent global, abstract, and class-specific information (LeCun 
et al., 2015; Zeiler and Fergus, 2014). By comparing fMRI data with a 
trained CNN at different hierarchical stages of human visual represen-
tations during object recognition, Cichy et al. (2016a) established that 
the low-level visual features are primarily extracted in the occipital lobe, 
whereas more abstract information is represented in the temporal and 
parietal lobes. Similarly, using a diverse set of models based on image 
properties and human perceived property models, Tsantani et al. (2021) 
have investigated the nature of information in the occipital and tem-
poral lobes of face perception. The authors concluded that higher-level 
perceptual and social face information is encoded in the FFA, while 
low-level image-based properties are mainly represented in the OFA. In 
terms of the temporal dimension, previous studies have found that the 
FFA contains face-specific information around 50–75 ms and encodes 
individual-level face information invariant over facial expressions be-
tween 200 and 500 ms (Ghuman et al., 2014). On the other hand, the 
occipital and temporal regions primarily represent image-based prop-
erties within 100–200 ms and transition toward identity-based repre-
sentation after 200–300 ms (Vida et al., 2017). However, there is 
currently no research available on the temporal properties about the 
nature of information encoded in the brain regions for the discrimina-
tion of facial expressions. 

Hence, we aimed to address two key questions regarding the tem-
poral representation of facial expressions to provide insights into the 
precise process of emotional faces information transmitting in the 
human brain. (1) When do different regions of face-selective regions 
begin to discriminate facial expressions? (2) What is the nature and time 
course of the information encoded in these regions, specifically whether 
it is low-level image-based or high-level category-based, and when does 
this encoding emerge? To answer these questions, we conducted MEG 
recordings from adult participants while they viewed facial expression 
images. The high temporal and spatial resolution of MEG makes it an 
ideal tool to uncover the spatiotemporal dynamics of brain activities 
underlying facial expression perception (Gross, 2019). We adopted a 
passive viewing design, which was commonly used in previous studies 
on face perception (Dima et al., 2018; Muukkonen et al., 2020). To 
investigate the time course of facial expression discrimination in 
face-selective brain regions, we used MVPA to compute time-resolved 
pairwise decoding accuracy for all possible pairs of facial expression. 
Additionally, we sought to establish a connection between neural and 
behavioral responses. This was achieved by comparing the pairwise 
structure of the neural data with behavioral judgments of the stimuli 
used in our MEG decoding task. We employed deep features from a 
lower layer and a higher layer of a fine-tuned CNN to construct 
image-based and category-based representations of the stimuli. We then 
evaluated the information encoded in the neural data by comparing its 
pairwise dissimilarity structure within each region to these representa-
tions. This process helped determine which representa-
tion—image-based or category-based—more closely resembled the 
neural data. A visual overview of this study workflow is shown in Fig. 1. 

2. Methods 

2.1. Participants 

Twenty healthy volunteers were recruited to participate in the study 
and received monetary compensation for their involvement. One 
participant (sub11) was excluded due to their behavioral classification 
performance falling below 3 standard deviations from the mean. The 
other two participants (sub14 and sub15) were excluded due to exces-
sive head motion, defined as exceeding 5 mm in at least 10 MEG blocks. 
Data from the remaining 17 participants (10 females, mean age 26, SD 
= 5.08) were used in all analyses throughout the study. All participants 
were right-handed, had normal or corrected-to-normal vision, and had 
no diagnosed difficulties in recognizing faces. 
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2.2. Stimuli 

The stimulus consisted of 56 facial expression images (Fig. 1a), 
which were selected from the NimStim Face Stimuli Set (Tottenham 
et al., 2009). These images included seven types of facial expressions 
(happiness, sadness, anger, disgust, fear, surprise, and neutral) from 
eight individuals (four females and four males). Specifically, each facial 
expression category had eight images from eight different individuals. 
First, all facial expression images with 68 face key points were 

automatically identified using the Dlib face detector (King., 2009). 
Using the key points of the facial contour, eyes, and mouth, the facial 
expression images were transformed to minimize differences in align-
ment. Second, an oval mask of constant size was applied to each facial 
expression image to remove hair cues and other visible indicators. Third, 
each image was converted into grayscale and adjusted to match the 
mean luminance and contrast. 

Fig. 1. Illustrations of stimuli, experimental paradigm, multivariate decoding analysis, and image- and category-based representation of the fine-tuned CNN are as 
follows: (a) Examples of face stimuli. All facial expression images were selected from the NimStim Face Stimulus Set. The examples shown here depict faces with a 
happy expression. (b) Participants viewed 56 facial expression images while performing a color change detection task. Each image was presented for 1000 ms, 
followed by a variable inter-stimulus interval (ISI; 1200–1500 ms). (c) Multivariate pattern analyses were performed in a time-resolved manner on trials from MEG 
source space separately for each face-selective region and participant. For each time point, the principal components (PCs) pattern of the response extracted after 
trials was averaged, and pairwise support vector machines (SVM) classification was performed with leave-one-out cross-validation (LOOCV). The resulting decoding 
accuracy values were assembled in a 7 × 7 representational similarity matrix (RDM) at each time point. (d) The image- and category-based representations were 
computed based on the fine-tuned CNN. 
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2.3. Experimental procedure 

During the MEG experiment, participants were seated upright while 
viewing the face stimuli. Electromagnetic coils were attached to the 
nasion and preauricular points on the scalp of each participant to 
determine head location. As shown in Fig. 1b, each trial began with a 
face stimulus presented on a gray background for 1000 ms. This was 
followed by the presentation of a central fixation cross with a variable 
ISI that lasted between 1200 and 1500 ms. The color of the fixation cross 
sometimes changed from black to red. Participants were instructed to 
press a button using their right index finger when they saw this color 
change. The purpose of this task was to maintain the participants’ 
attention. The trials used to maintain the participants’ attention during 
the experiment were removed from subsequent analyses. Participants 
viewed 20 blocks of trials in which each of the 56 images was presented 
once, randomly interleaved with 11 color-detection trials, for a total of 
67 trials per block. In the subsequent decoding analysis, a total of 1120 
trials were included, with 160 trials for each emotional category. To 
ensure that the participants could better understand the experiment, one 
practice block was presented before the formal phase. 

After the MEG experiment, the participant were asked to complete 
two behavioral tasks. Firstly, the participant performed a facial emotion 
classification task. Each trial began with a face image chosen in order 
from the 56 stimuli used in the MEG experiment. The stimuli were dis-
played in the center of the screen, and the participants were asked to 
choose one of the seven labels (“anger”, “disgust”, “fear”, “happiness”, 
“sadness”, “surprise”, and “neutral”) that matched the face image. These 
labels were presented at the bottom of the screen. Once a response was 
made, the next trial started. In addition to measuring participants’ 
ability to identify facial expressions, we also used this task to compare 
the behavioral performance with the classification performance of a 
deep neural network. Once the classification task was complete, par-
ticipants viewed a pair of face images and rated the similarity of the 
facial emotion on a 9-point scale, with a value of 1 indicating different 
facial emotions and a value of 9 indicating the same facial emotion. All 
stimulus pairs used in the task consisted of face images of two different 
expressions (e.g., neutral vs. happy). Participants completed a total of 
336 emotional similarity assessments with the 21 facial expression pairs. 
Each facial emotion pair was evaluated 16 times because four of the 
eight facial expression images from the two emotional categories were 
randomly selected. In each trial, a pair of images was displayed on the 
screen side by side until the participant rated the pair and pressed a key 
for the next trial. 

All experiment paradigms were implemented using Python and 
PsychoPy (Peirce., 2007). The MEG experiment and behavioral tasks 
lasted approximately 60 min and 30 min, respectively. 

2.4. MEG acquisition and preprocessing 

MEG data were collected on a 275-channel CTF system (MEG In-
ternational Services LP, Coquitlam, British Columbia, Canada) with a 
sampling rate of 1200 Hz in a magnetically shielded and sound atten-
uated room at the Institute of Biophysics, Chinese Academy of Sciences. 
Recordings were available from 272 channels, with the exclusion of bad 
channels MLF55, MRT16, and MRT23. 

We preprocessed the raw data using MNE-Python (Gramfort et al., 
2013). The MEG triggers were aligned to the exact presentation time on 
the screen, which was recorded using an optical sensor attached to the 
projection mirror. Trials were extracted from − 200 to 1000 ms with 
respect to stimulus onset. The data were then bandpass filtered with 
lower and upper cutoffs set to 1 and 100 Hz, and a bandstop filter at 50 
Hz was applied to remove line noise, including harmonics. Each trial was 
baseline-corrected by removing the mean activation from each MEG 
sensor between − 200 ms and stimulus onset. To further increase the 
signal-to-noise ratio (SNR), empty room data were used to create signal 
space projectors, which were applied to the filtered raw data to remove 

environmental artifacts. Independent component analysis (ICA) was also 
applied to decompose the MEG data into a set of independent compo-
nents. The components that were likely to represent eyeblink artifacts 
were identified based on their spatial and temporal characteristics. 
Finally, trials with signals exceeding standard thresholds (magnetom-
eter = 4e-12T) in at least one channel were rejected, and the data were 
downsampled to 300 Hz (360 samples/trial) to reduce computational 
costs. 

2.5. MEG source estimation 

For each participant, we projected single-trial MEG data onto the 
cortical surface reconstructed from their anatomical MRI scan. This 
approach allowed us to combine each participant’s data across blocks 
while restricting our analyses to signals presumed to originate in pre-
determined regions of interest on the cortical surface. These regions of 
interest included the lateral occipital cortex (LO), fusiform gyrus(FG), 
inferior partial cortex (IP), posterior superior temporal sulcus (pSTS). 
The localization of these regions was achieved using a human brain 
anatomical atlas (Desikan et al., 2006). 

Specifically, for each participant, we first acquired a T1-weighted 
anatomical MRI scan on a 3T GE scanner (Discovery MR750, GE 
Healthcare Systems, Milwaukee, WI) at the Institute of Psychology, 
Chinese Academy of Sciences to create individual head models. 
Anatomical reconstructions based on the T1-weighted anatomical scan 
were completed using the FreeSurfer toolbox (Fischl., 2012). Then, we 
used the MNE-Python related function “watershed_bem” and FreeSurfer 
participant reconstruction to create BEM surfaces. In MNE-Python, we 
used the digitizer data and the BEM to align each participant’s MEG data 
to their anatomical MR image and computed a surface-based source 
space on the reconstructed cortical surface with source points spaced 5 
mm apart. We then generated a forward solution, which mapped the 
MEG sensor space to the source space. Using this forward solution and a 
noise covariance matrix calculated from the baseline period (− 200 to 0 
ms), we created an MEG inverse operator. Finally, we obtained the MEG 
source estimation in the LO, IP, FG, and pSTS of single-trial data by 
performing dSPM source localization in MNE-Python and setting the 
signal-to-noise ratio to 3. 

2.6. Identification of face-selective regions 

To localize source points in the LO, IP, FG, pSTS that respond 
selectively to faces, we employed a localizer task with a block design. 
This task included stimuli from four different categories: faces, houses, 
objects, and scrambled objects (Goesaert and Beeck, 2013; Nestor et al., 
2016). Activations from this task, specifically those indicating a stronger 
response to faces compared to objects (faces > objects), were identified 
as face-selective source points within the LO, FG, IP, and pSTS regions. 
We designated these regions as lLO-faces, lIP-faces, lFG-faces, and 
lpSTS-faces in the left hemisphere, with prefix “l” denoting “left”. 
Conversely, the prefix “r” was used for regions in the right hemisphere. 
We restricted all further analyses to these face-selective regions. 

Specifically, each participant completed four runs, each corre-
sponding to a different category of images (faces, objects, houses, or 
scrambled objects), with a fixation baseline of 10 s in between runs. 
Within each run of the MEG localizer, there were 12 blocks of one of the 
four categories. Twelve images from a single category were shown in a 
row in each block, in random order, for 1000 ms with a 100 ms ISI. 
Participants were instructed to press a button on the response glove with 
their right index finger to indicate that the color of the fixation cross 
changed to red within each block. In total, 144 trials per category were 
recorded. Face-selective source points were found in the source esti-
mation of the LO, IP, FG, and pSTS of each participant. We used the 
EEGLAB (Delorme and Makeig., 2004) to perform a nonparametric, 
one-way permutation test on trials of source space for each source point 
and postbaseline time point (10,000 permutations per test) in order to 
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find face-selective source points. The detailed process is described in 
Supplementary Note 1. 

2.7. Time-resolved multivariate pattern classification in face-selective 
regions 

We conducted multivariate classification based on previous MEG 
decoding studies (; Carlson et al., 2011; Cichy et al., 2014, 2016b). To 
improve the signal-to-noise ratio prior to decoding, we averaged every 
four trials belonging to the same facial expression for each face-selective 
region of each participant (Grootswagers et al., 2017; Isik et al., 2014). 
With 160 trials for each emotional category, after averaging every four 
trials, there are 40 trials available for multivariate classification for each 
emotional category. Second, a source point of the averaged trial was 
retained if the corresponding source point was identified as 
face-selective in the localization analysis. Following prior research that 
used a sliding window of temporal resolution (Ghuman et al., 2014; 
Ramkumar et al., 2013), time was expressed as the beginning of the 30 
ms window with a sliding interval of 10 ms for classification. Finally, for 
each brain region of per participant, the vector of source data across all 
time points between the current time point and 30 ms after the current 
time point was extracted. To reduce computational costs and minimize 
noise, principal component analysis was applied to the MEG source 
space trials for each time point, retaining all components that explained 
99.99 % of the variance in the data. These principal component scores 
were used for the subsequent classification in a time-resolved manner. 

To obtain a dissimilarity measure for each pair of facial expressions, 
we computed the pairwise classification accuracy of a linear SVM with 
leave-one-out cross-validation (Chang and Lin, 2011).That is, a pairwise 
classification was conducted between each possible facial expression 
pair (e.g., anger vs. happy), resulting in a total of 21 pairwise classifi-
cation accuracy values. The pairwise classification was repeated n times 
because there were n-1 + n-1 samples in the training set and 1 + 1 in the 
test set with LOOCV. The representational dissimilarity matrix (RDM), a 
7 × 7 decoding matrix, used the average accuracy across repetitions as 
its value (Fig. 1c). The diagonal of the RDM was undefined, and the RDM 
is asymmetrical. In each face-selective area and per participant, we thus 
averaged all pairwise decoding accuracy values in the lower triangular 
of each RDM, which resulted in one average decoding accuracy value at 
each time point. In each face-selective region, the final time course of 
neural decoding accuracy was computed by averaging data across all 
participants. To smooth the decoding accuracy, we averaged these ac-
curacy values for every three neighboring time points. 

2.8. A deep neural network for facial expression classification 

CNNs have achieved remarkable performance in ImageNet locali-
zation and classification tasks (He et al., 2016). A common CNN model 
consists of multiple convolutional and pooling layers stacked on top of 
each other. Although a CNN does not explicitly model time, it has a clear 
sequential structure where information flows from one layer to the next 
in a feedforward manner. The visual information represented at each 
layer of a CNN follows a hierarchical organization, where the lower 
layers capture low-level features such as edges, colors, and orientations, 
while higher layers capture more complex features such as object and 
face parts. The top layers of the CNN represent high-level class-specific 
information, such as faces and objects (LeCun et al., 2015; Zeiler and 
Fergus, 2014). 

Through a comprehensive evaluation of networks with increasing 
depth using an architecture with small convolution filters, VGGNets 
have been proven to be an effective method for face and facial expres-
sion recognition (Simonyan and Zisserman, 2015). Transfer learning is 
also commonly used for tasks where the dataset has too little data to 
train a full-scale model from scratch. Therefore, we fine-tuned a 16-layer 
VGGNet pretrained on ImageNet for facial expression recognition using 
backpropagation. This means that the network learned neuronal tuning 

functions on its own. The images were obtained from JAFFE (Lyons 
et al., 1998), CK+ (Lucey et al., 2010), FACES (Ebner et al., 2010), and 
KDEF (Goeleven et al., 2008) datasets, which contained seven classes of 
facial expressions (anger, disgust, fear, happiness, neutral, sadness, and 
surprise) with approximately 700 face images in each expression cate-
gory. To avoid overfitting, data augmentation techniques were 
employed during the training of the VGGNet model. The dataset was 
divided into 10 groups using random splitting, with one group used as 
the validation set and the remaining groups used for training. The 
network weight parameters were learned using mini-batch stochastic 
gradient descent (SGD) with momentum set to 0.9. Each batch of 256 
facial expression images was fed into the network for 50 epochs. The 
base learning rate used for training was set to 0.001. 

2.9. Correlation between constructed dissimilarity representations and 
neural response 

We employed representational similarity analysis (Kriegeskorte 
et al., 2008; Norman et al., 2006) to compare the neural data in 
face-selective regions with the constructed dissimilarity representations 
of face stimuli. 

According to the above description, we computed neural RDM for 
each time point, per face-selective region, and per participant based on 
pairwise SVM classification of the MEG data. Each cell in the neural 
RDM represented the classification accuracy between the two emotional 
categories of facial expression. The constructed dissimilarity represen-
tations included the behavioral RDM, image-based representations, and 
category-based representations, which were generated as follows. 

First, we subtracted each behavioral similarity rating from 10 to 
create a dissimilarity rating. For example, if a participant evaluated the 
emotion similarity of a pair of facial expressions (e.g., happy vs. angry) 
as 1, the dissimilarity rating was computed by subtracting the similarity 
value from 10. The 7 × 7 behavioral RDM, which was indexed in rows 
and columns by the compared emotions, was constructed using the 
dissimilarity rating of 21 pairs of facial expressions. Each cell of the 
behavioral RDM reflects the averaged emotion dissimilarity judgement 
of a pair of facial expressions across all participants. 

Second, we extracted the deep features of our stimulus from the first 
convolution layer in the first block and fifth block structure of the fine- 
tuned VGGNet. These two convolution layers were named the conv1–1 
and conv5–1 layers, respectively. The conv1–1 layer extracted the image 
properties, while the conv5–1 layer extracted the category information 
of facial expressions. We then averaged the features of facial expressions 
with the same emotional category in the conv1–1 and conv5–1 layers 
and calculated the dissimilarities (1-Spearman’s r) between each pair of 
facial expressions. This produced the image-based representation and 
category-based representation (Fig. 1d). 

In each face-selective region, the lower triangles of neural RDMs 
were then correlated (using Spearman’s correlation) with the behavioral 
RDM and image- and category-based representations separately for each 
time point and per participant. In each face-selective region, the final 
time course of correlation was computed by averaging across all par-
ticipants. To smooth the correlation, we averaged the correlation values 
of every three neighboring time points. 

2.10. Statistical analysis 

We employed non-parametric statistical tests for all data analyses, 
which were not predicated on any assumptions regarding the data dis-
tributions (Maris and Oostenveld, 2007; Pantazis et al., 2005). To 
perform statistical inference on decoding accuracy or correlation coef-
ficient of RSA time series in all face-selective regions, we employed 
permutation-based cluster-size inference. The null hypothesis was 
established with a reference to a 50 % chance level for decoding accu-
racy values, and correlation coefficient or correlation differences were 
presumed to be 0. The significant temporal clusters were defined as 
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consecutive time points that exceeded a statistical threshold, also known 
as the cluster-inducing threshold. First, the conditional labels of the 
MEG data were permuted by randomly multiplying participants’ results 
by +1 or − 1 (i.e., sign permutation test); this procedure was repeated 
1000 times resulting in a permutation distribution for every time point. 
Second, time points that exceeded the 95th percentile of the permuta-
tion distribution served as cluster-inducing time points (i.e., equivalent 
to p < 0.05; one-sided). Finally, clusters in time were determined using 
the 95th percentile of the maximum number of consecutive significant 
time points across all permutations (i.e., equivalent to p < 0.05; 
one-sided). 

2.11. Onset, peak latency, and peak accuracy analysis 

We employed bootstrap tests to examine the significant differences in 
the onset, peak latency, and peak accuracy for the time-resolved 
decoding accuracy among face-selective regions. Specifically, in each 
face-selective region, we first bootstrapped the participants’ decoding 
accuracy at each time point 1000 times to obtain a three-dimensional 
matrix (participants × time points × 1000). We then computed the 
empirical distribution of the onset (i.e., minimum significant time point 
post-stimulus onset), peak (i.e., time point of maximum classification 
value between 80 and 220 ms post-stimulus onset) latency, and peak 
accuracy (i.e., maximum classification accuracy between 80 and 220 ms 
post-stimulus onset) of different face-selective regions. Because the peak 
latency and accuracy focused on the first peak that occurred after 
stimulus onset, we restricted the period to 220 ms post-stimulus onset to 
prevent confusion with stimulus offset responses (Carlson et al., 2011). 
To examine the differences in onset, peak latency, and peak accuracy 
among face-selective regions, we computed 1000 bootstrap samples of 
the difference, resulting in an empirical distribution of onset, peak la-
tency, and peak accuracy differences. The number of differences smaller 
or larger than zero was divided by the number of permutations to 
calculate the p-value (i.e., two-sided testing). These p-values were then 
corrected for multiple comparisons using the false discovery rate (FDR) 
at a 0.05 level. 

3. Results 

3.1. Analysis of behavior 

For the behavioral experiment, the average confusion matrix of the 
classification task and the behavioral RDM of the similarity rating task 
across participants are shown in Fig. 2a and 2b. The average classifi-
cation accuracy is 75.21 % with a standard deviation of 5.46 % across all 

participants. 
For the classification task, a one-way repeated measures ANOVA 

revealed that the effect of emotion was highly significant, F(6, 96) =
19.4, p < 0.001, η2

P = 0.55. Follow-up paired sample t-tests with FDR 
correction revealed that happy faces were recognized significantly more 
accurately than angry, disgusted, fearful, and sad faces (all t > 6.6, all p 〈
1.8e-5, all d 〉 1.6). There was also a trend for happy faces to be better 
recognized than surprised faces (t(16) = 3.44, p = 0.0066, d = 0.83). 
Neutral faces were recognized significantly more accurately than angry, 
disgusted, fearful, and sad faces (all t > 5.8, all p 〈 6.7e-5, all d 〉 1.4) and 
displayed a trend for better recognition than surprised faces (t(16) =
3.34, p = 0.0072, d = 0.81), but neutral faces were not better recognized 
than happy faces (t(16) = 0.80, p = 0.4524, d = 0.19). 

There was a trend that surprised faces are recognized more accu-
rately than sad (t(16) = 3.44, p = 0.0066, d = 0.83), fearful (t(16) =
2.76, p = 0.0206, d = 0.67), and disgusted (t(16) = 3.42, p = 0.0066, d =
0.83) faces, while surprised faces were not recognized better than angry 
faces (t(16) = 1.41, p = 0.2188, d = 0.34). There were no significant 
differences in accuracy between fearful faces and sad (t(16) = 0.81, p =
0.4428, d = 0.2095), disgusted (t(16) = 0.35, p = 0.7258, d = 0.0866), 
and angry (t(16) = 2.12, p = 0.0645, d = 0.5163) faces. Furthermore, 
there was no significant distinction between sad and disgusted faces (t 
(16) = 1.01, p = 0.38, d = 0.24). 

Overall, the behavioral classification performance was consistent 
with previous findings, indicating that happy faces are the most easily 
recognized facial expressions (Calvo and Beltrán, 2013). However, dis-
tinguishing between negative emotions, especially based on fearful, sad, 
and disgusted faces, was more challenging (Blair and Coles, 2000; Sul-
livan and Ruffman, 2004). 

3.2. Time resolved decoding of facial expressions 

To determine the time course at which neural representations in the 
human brain start to discriminate facial expressions, we employed linear 
SVM to classify each possible pair of facial expressions. We then 
computed the average of all 21 pairwise accuracy values at each time 
point, resulting in the time course of neural decoding accuracy for the 
seven categories of facial expressions. Decoding accuracy values were 
averaged across participants (Fig. 3a). Since it was a binary classification 
for each possible pair of expressions (e.g., anger and happy) selected 
from the seven expression categories, the chance level was 50 %. The 
results showed that facial expressions were rapidly discriminated from 
neural representations. The discrimination reached the level of signifi-
cance at 100 ms after stimulus onset and peaked at 150 ms, with a 
decoding accuracy of 57.9 %. The accuracy remained significantly above 

Fig. 2. Averaged facial expression classification and similarity rating performance across all participants are shown in Fig. 2a and Fig. 2b. (a) The confusion matrix is 
based on the facial expression classification task. Rows represent expression categories, and columns represent the responses chosen by participants (AH: anger, DI: 
disgust, FE: fear, HA: happy, NE: neutral, SA: sad, SP: surprise). The diagonal represents correct responses, and the off-diagonal represents errors. The color scale 
indicates the average number of times a particular facial expression and response pair were chosen across participants. (b) The RDM is based on the behavioral facial 
expression similarity rating task. Rows and columns represent expression categories (AH: anger, DI: disgust, FE: fear, HA: happy, NE: neutral, SA: sad, SP: surprise). 
The diagonal is undefined. The color scale indicates the dissimilarity of a pair of facial expressions, computed based on similarity ratings averaged across participants. 
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the chance level until 540 ms. 
To determine when these face-selective regions encoded information 

for facial expressions discrimination, we examined the time course of 
neural representations for discriminating facial expressions in each of 
the four face-selective regions in the left hemisphere (lLO-faces, lIP- 
faces, lFG-faces, and lpSTS-faces; Fig. 3b) and right hemisphere (rLO- 
faces, rIP-faces, rFG-faces, and rpSTS-faces; Fig. 3c) using the same 
decoding analysis at the whole-brain level. In the left hemisphere, the 
results showed that following the stimulus onset, facial expressions were 
discriminated at 110–390 ms in the lLO-faces, 120–580 ms in the lIP- 
faces, 130–310 ms in the lFG-faces, and 150–290 ms in the lpSTS- 
faces. In the right hemisphere, facial expressions were discriminated 
at 100–320 ms in the rLO-faces, 110–540 ms in the rIP-faces, multiple 
ranges (120–180 ms, 250–300 ms, and 350–430 ms) in the rFG-faces, 
and 130–330 ms and 390–510 ms in the rpSTS-faces. For all cluster- 
corrected sign permutation tests, the cluster definition threshold and 
the cluster-corrected significance level were set at p < 0.05. Thus, the 
time-resolved decoding analysis suggested that starting at about 100 ms 
and 150 ms, all source points in the LO-faces, IP-faces, FG-faces, and 
pSTS-faces began to discriminate facial expressions. We also conducted 
facial expressions decoding in all regions to obtain a more comprehen-
sive understanding of facial expression processing (Supplementary Note 
2). These regions were also localized using an anatomical atlas of the 
human brain (Desikan et al., 2006). 

For the time-resolved decoding analysis, the onset latency in the lLO- 
faces was earlier than that in the lFG-faces (p < 0.05, two-sided boot-
strap test, FDR corrected) and the lpSTS-faces (p < 0.001), but not 
earlier than that in the lIP-faces (Fig. 4a, p = 0.1). The onset latencies in 
the lIP-faces and lFG-faces were earlier than in the lpSTS-faces (Fig. 4a, p 
< 0.001). Although the onset latency in the lIP-faces was earlier than 
that in the lFG-faces, the significance was only marginal (Fig. 4a, p =
0.0445). In the rLO-faces, the onset latency occurred earlier than in the 
rFG-faces (p < 0.001, two-sided bootstrap test, FDR corrected) and the 
rpSTS-faces (p < 0.001), as well as in the rIP-faces (Fig. 4b, p < 0.05). 
The onset latencies in the rIP-faces and rFG-faces were earlier than in the 
rpSTS-faces (Fig. 4b, p < 0.05). Thus, these findings indicated that 
activation occurred earlier in the LO-faces than in FG-faces and pSTS- 
faces, and activation appeared to occur earlier in the IP-faces and FG- 
faces than in pSTS-faces. 

In addition, the peak decoding accuracy appeared at about 150 ms in 
the lLO-faces and lIP-faces, and appeared at about 200 ms in the lFG- 
faces and lpSTS-faces after stimulus onset (Fig. 4c). The decoding ac-
curacy peaked at about 150 ms in rLO-faces, rIP-faces, and peaked at 
about 200 ms in the rpSTS-faces (Fig. 4d). There were two peak 
decoding accuracy values in rFG-faces, occurring at 150 ms and 200 ms. 
We noticed that the peak latencies were not significant different in these 
face-selective areas in the left (Fig. 4c) and right (Fig. 4d) hemispheres. 

Aside from the differences in latencies in the four face-selective 

Fig. 3. The averaged time course of the facial expression decoding accuracy across participants was examined in three different contexts: (a) at the whole brain level, 
(b) in the face-selective regions of the left hemisphere, and (c) in the face-selective regions of the right hemisphere. The x-axis represents time, with 0 indicating the 
stimulus onset. The lower part of the plots includes dotted black and colored lines that indicate the range of time during which expression discrimination is 
significantly better than chance, as determined by a cluster-based sign permutation test (with a cluster-defining threshold of p < 0.05 and a corrected significance 
level of p < 0.05). 
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regions, we also compared the peak accuracy in these regions. The peak 
accuracy of the lLO-faces was higher than that in the lFG-faces (p <
0.005) and lpSTS-faces (Fig. 4e, p < 0.05). The peak accuracy of the lIP- 
faces was also higher than that in the lFG-faces (p < 0.001) and lpSTS- 
faces (Fig. 4e, p < 0.001). Moreover, the peak accuracy of the rLO- 
faces outperformed that in the rFG-faces (p < 0.001, two-sided boot-
strap test, FDR corrected) and rpSTS-faces (Fig. 4f, p < 0.001). The peak 
accuracy in the rIP-faces was also higher than that in the rFG-faces (p <
0.05) and rpSTS-faces (Fig. 4f, p < 0.001). Thus, the difference in peak 
accuracy showed that LO-faces and IP-faces exhibit better performance 
in discriminating facial expressions when compared with the FG-faces in 

the ventral pathway and pSTS-faces in the lateral pathway. 

3.3. Temporal representation to different facial expressions 

To explore the temporal representation of different facial expres-
sions, we also performed a binary classification of neutral expression 
compared separately to each of the six emotional expressions at the 
brain level. The binary classification accuracy values were averaged 
across participants (Fig. 5a). Happy faces could be discriminated be-
tween 90 and 520 ms, with a peak of 120 ms and an accuracy of 61.15 %. 
Angry faces were significantly discriminated between 80 and 500 ms, 

Fig. 4. (a) and (b)The onset latency, (c) and (d) peak latency, and (e) and (f) peak accuracy for decoding facial expressions in face-selective areas in the left and right 
hemisphere are shown. Stars above the bars indicate significant differences across regions (one-sample two-sided bootstrap test with FDR correction, *p < 0.05, **p <
0.01,***p < 0.001). 
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peaking at 150 ms with an accuracy of 59.43 %. Disgusted faces were 
also distinguished between 90 and 520 ms, with a peak at 140 ms (57.70 
%). The accuracy was significantly above the chance level at 110–550 
ms of fearful faces, at 120 and 350 ms, and 380 and 510 ms of sad faces, 
and at 90–360 ms and 420–630 ms of surprised faces. Overall, these 
results revealed that the neural representation of each category of 
emotional face was rapidly discriminated from neutral expression at 
approximately 100–500 ms after the stimulus onset, with a peak at most 
150 ms. 

Furthermore, considering the function of LO-faces and IP-faces in 
discriminating facial expression, we also performed binary classification 
on these two face-selective regions. In the lLO-faces, apart from the 
fearful and sad faces, the remaining emotion faces can all be discrimi-
nated from neutral faces (Fig. 5b). In the lIP-faces, we found that the 
neural representation successfully discriminated all six emotional ex-
pressions from the neutral expression (Fig. 5c). In the right hemisphere, 
except for the surprise faces, the neural representation in rLO-faces 
successfully discriminated other emotional expressions from the 

Fig. 5. Averaged time course of the classification accuracy values between neutral expression and each of the emotional facial expressions across participants. (a) 
Whole brain level, (b) lLO-faces, (c) lIP-faces, (d) rLO-faces, (e) rIP-faces. Abbreviations: HA: happiness, AN: anger, DI: disgust, FE: fear, SP: surprise, SA: sadness. The 
dotted lines below the plots indicate significant times according to a cluster-based sign permutation test (cluster-defining threshold p < 0.05, corrected significance 
level p < 0.05). 
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neutral expression (Fig. 5d). There was also a clear differentiation in rIP- 
faces between neutral expressions and each of the six facial expression 
categories (Fig. 5e). To test how persistent these neural representations 
of facial expressions were, we also performed temporal generalization 
analysis for each facial expression (Supplementary Note 3). 

3.4. Correlation between behavioral similarity rating and neural response 

To examine the extent to which the neural data in face-selective 
regions could correlate with behavior, we compared the pairwise 
structure of neural RDMs to the behavioral RDM. The behavioral RDM 
correlated significantly with neural RDMs in the lLO-faces (time periods: 
100–190 and 270–380 ms) and lIP-faces (110–190 and 320–440 ms; 
Fig. 6a), but was not correlated with neural RDMs in the lFG-faces and 
lpSTS-faces in any time window (Fig. 6b). In the right hemisphere, the 
behavioral RDM correlated significantly with the neural RDMs in the 
rLO-faces (time periods: 90–160 ms) and rIP-faces (60–200 and 
350–460 ms; Fig. 6c). There was also a significant correlation between 
the behavioral RDM and neural RDMs in the rpSTS-face at early time 
points (60–190 ms; Fig. 6d). 

Thus, neural data in the LO-faces and IP-faces correlated with 
behavioral responses between ~100 and 450 ms after stimulus onset, 
indicating that these regions contain adequate information for 
discriminating facial expressions. 

3.5. Comparison between deep feature-based representation with neural 
response 

Using facial expression images from public datasets, we trained the 
16-layer VGGNet pre-trained in ImageNet to perform facial expression 
recognition. When we used our emotional face stimuli as a test set for the 
fine-tuned VGGNet, the confusion matrix was constructed with a clas-
sification accuracy of 69.6 % (Table 1). The rows and columns of the 
confusion matrix represent the true expression category and the pre-
dicted class by VGGNet, respectively. For example, the cell in the second 
column of the first row reflects that the true emotional category of “AN” 

Fig. 6. Averaged correlations between behavioral RDM and neural RDMs in face-selective regions across participants are shown in Figure (a) for lLO-faces and lIP- 
faces, (b) for lFG-faces and lpSTS-faces, (c) for rLO-faces and rIP-faces, and (d) for rFG-faces and rpSTS-faces. Dotted horizontal lines below the plots indicate the time 
duration of significant activation according to a cluster-based sign permutation test (cluster-defining threshold p < 0.05, corrected significance level p < 0.05). 

Table 1 
The confusion matrix of facial expressions classification using the fine-tuned 
VGGNet. The rows represent the true expression category, and the columns 
indicate the predicted class by VGGNet (AN: Anger, DI: Disgust, FE: Fear, HA: 
Happy, NE: Neutral, SA: Sad, SP: Surprise). The diagonal hence represents cor-
rect responses, and the off-diagonal represents errors.  

Actual Expression AN 7 1 0 0 0 0 0 
DI 3 2 0 1 0 2 0 
FE 0 0 6 0 1 1 0 
HA 0 0 0 8 0 0 0 
NE 1 0 0 0 7 0 0 
SA 0 0 2 0 1 5 0 
SP 0 0 3 0 0 1 4   

AN DI FE HA NE SA SP   

Predicted Expression  
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was classified as “DI”. 
The performance of VGGNet was comparable to the participants’ 

behavioral results, where the mean accuracy across participants was 
75.2 % (SD=5.5). Deep features of the test set were then extracted in the 
low layer (conv1–1) and high layer (conv5–1) of the fine-tuned VGGNet. 
We constructed the image-based representation using the features in the 
conv1–1 layer and computed the category-based representation utilizing 
the features in the conv5–1 layer. Each cell in the image- and category- 
based representation reflects the dissimilarity (1-Spearman’s r) between 
a pair of facial expressions. Thus, the image-based representation 
(Fig. 7a) mainly reflects image properties such as texture and edge, and 
the category-based representation (Fig. 7b) shows the category infor-
mation of stimuli. 

To understand when and what information was encoded in each 
face-selective region for facial expression discrimination, we examined 
the correlation of the neural RDMs within each region after stimulus 
onset with the image- and category-based representations. The RDMs in 
lLO-faces correlated with the image-based representation during the 
time periods of 120–160 ms, as well as the category-based representa-
tion during the time periods of 110–240 ms and 310–390 ms after 
stimulus onset (Fig. 8a). Similarly, the RDMs in lIP-faces also correlated 
with the image-based representation during the periods of 130–230 ms, 
and the category-based representation during the periods of 120–260 ms 
(Fig. 8b). In contrast, no correlation was found between the RDMs in 
lFG-faces and either image- or category-based representations (Fig. 8c), 
and the RDMs in lpSTS-faces only correlated with the category-based 
representation in a very short period between 180 and 230 ms 
(Fig. 8d). In the right hemisphere, the RDMs in rLO-faces (Fig. 8e), rIP- 
faces (Fig. 8f), and rpSTS-faces (Fig. 8h) had a significant correlation 
with the category-based representation but not with the image-based 
representation. The RDMs in rFG-faces had no correlation with either 
image- or category-based representation at any time points (Fig. 8 g). 

More importantly, we found that the RDMs in lLO-faces (time pe-
riods: 100–220 ms and 330–400 ms) and lIP-faces (time periods: 
100–270 ms and 330–430 ms) were more strongly correlated with the 
category-based representation than the image-based representation. 
Similarly, compared to the image-based representations, the RDMs in 
rLO-faces (time periods: 130–180 ms and 200–300 ms) and rIP-faces 
(time periods: 130–220 ms and 390–480 ms) were also more strongly 
correlated with category-based representations. Thus, even from ~100 
ms after stimulus onset, the neural data in the LO-faces and IP-faces 
encoded categorical information rather than image information of 
facial expressions. Due to the HMAX model being considered as stimu-
lating the visual responses of simple cells in V1 (Riesenhuber and Pog-
gio, 1999), we also computed the image-based representation based on 
activations for facial expression images from the HMAX C2 layer. We 

then compared the neural RDMs in LO-faces and IP-faces with the 
image-based representation in the HMAX model. The result (Supple-
mentary Note 4) may support the above finding that the neural data in 
IP-faces and LO-faces encoded the categorical information rather than 
the image information of facial expressions. 

4. Discussion 

The primary objective of this study was to investigate the temporal 
dynamics of neural representations in face-selective regions during the 
processing facial expression using high spatiotemporal resolution MEG 
techniques. The findings of this study revealed that within a time frame 
of 100 to 150 ms after the onset of the stimulus, face-selective regions 
such as LO-faces, IP-faces, FG-faces, and pSTS-faces already demon-
strated the ability to differentiate between different facial expressions. 
Interestingly, the neural activation patterns observed in LO-faces and IP- 
faces indicated that these regions were primarily involved in the 
emotional categories rather than the image information processing. 
Additionally, a noteworthy correlation was observed between the neural 
representations in LO-faces and IP-faces and the participants’ perfor-
mance in facial expression similarity tasks, within a time window of 
approximately 100 to 450 ms. 

At the whole-brain level, the onset latency (at 100 ms) of facial 
expression discrimination was consistent with previous studies that have 
investigated the temporal dynamics of emotion face processing. For 
instance, multivariate analysis of EEG data has revealed that represen-
tations of facial expressions were extracted at approximately 100 ms (Li 
et al., 2022; Muukkonen et al., 2020; Smith and Smith, 2019). Decoding 
of each of the six basic expressions and neutral faces began at 80 and 
120 ms in the human brain. These onsets of above-chance accuracy are 
similar to the binary classification for angry faces and neutral/happy 
faces in MEG studies (Dima et al., 2018), as well as the binary classifi-
cation each of happy, fearful, angry faces, and neutral expressions in 
EEG studies (Muukkonen et al., 2020). 

Crucially, our study utilizes time-resolved decoding analysis to 
investigate the time course of facial expression discrimination in mul-
tiple regions of interest within a distributed network. To the best of our 
knowledge, this was the first study to examine the time course of these 
face-selective regions in this specific context. In previous EEG study, Li 
et al. (2022) found that certain EEG channels located in the right oc-
cipital, temporal, parietal, and frontal regions achieved significant 
multiclass decoding accuracy for fearful, happy, and neutral faces in the 
time windows after 130 ms. A MEG study also demonstrated that re-
sponses from occipital sensors successfully discriminated angry and 
neutral faces at 93 ms, as well as angry and happy faces at 113 ms (Dima 
et al., 2018). However, the spatial information of facial expression 

Fig. 7. RDMs were created based on deep features from different layers in the VGGNet. (a) Image-based representation. (b) Category-based representation. Rows and 
columns represent expression categories (AH: Anger, DI: Disgust, FE: Fear, HA: Happy, NE: Neutral, SA: Sad, SP: Surprise). The diagonal is undefined. The color scale 
indicates the dissimilarity (1-Spearman) of a pair of facial expressions, computed based on deep features extracted from VGGNet. 
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Fig. 8. Averaged correlations between image- and category-based representation and neural RDMs in face-selective regions across participants are shown in (a) lLO- 
faces, (b) lIP-faces, (c) lFG-faces, (d) lpSTS-faces, (e) rLO-faces, (f) rIP-faces, (g) rFG-faces, and (h) rpSTS-faces. Dotted lines under the plots indicate time intervals 
where the category-based (red dotted line) or image-based (blue dotted line) representation was significantly correlated with neural RDMs. The dotted black lines 
indicate time intervals during which the correlations differed significantly between the image- and category-based representation (both according to the cluster-based 
sign permutation test, cluster definition threshold p<0.05, and corrected significance level p<0.05). 
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decoding in M/EEG sensor space cannot be localized to these 
face-selective areas in the distributed network. Our results precisely and 
clearly illustrated when all regions of face-selective areas began to 
encode information for discriminating facial expressions, which sug-
gested rapid emotional face processing in the ventral, lateral, and dorsal 
visual pathways. 

We also observed that the decoding accuracy initially peaked be-
tween 140 and 200 ms in these regions, except for the rpSTS-faces 
condition (which peaked at 270 ms). Interestingly, the latencies of 
peak decoding accuracy in these regions were similar to the time point at 
which the N170 component, evoked by face stimuli, typically appears. 
However, most studies have identified early components (i.e., 100–250 
ms post-stimulus presentation) as markers that carry information about 
differences between expressive and neutral faces (Batty and Taylor, 
2003; Caharel et al., 2005; Wronka and Walentowska, 2011), while the 
subsequent component (i.e., after 250 ms post-stimulus) is seen as a 
marker that differentiates various expressions (Rellecke et al., 2012, 
2013). The findings in our study demonstrate that facial expressions are 
successfully discriminated in regions of interest at a much earlier stage 
(approximately 100 ms), which is in contrast to traditional component 
analysis in ERP studies. This difference is likely due to the method of 
analysis. Multivariate analysis techniques consider the relationship 
among multiple variables (such as channels in M/EEG), which can 
enhance the sensitivity of identifying differences among multiple 
experimental conditions (Grootswagers et al., 2017; Norman et al., 
2006). As emotional faces are represented in the brain in a complex and 
network-based manner (Hamann, 2012), multivariate analysis is more 
advantageous for addressing the temporal dynamics of information 
processing in the human brain. 

Our findings provide empirical support for the significance of face- 
selective regions in the decoding of facial expression. Prior studies uti-
lizing functional magnetic resonance imaging (fMRI) have demonstrated 
that the FFA (Greening et al., 2018; Liang et al., 2017; Wegrzyn et al., 
2015) and pSTS (; Said et al., 2010; Wegrzyn et al., 2015; H. Zhang et al., 
2016; ) regions possess the capability to accurately predict facial ex-
pressions through the utilization of multivariate analysis techniques, 
surpassing chance levels. Our results aligned with these previous find-
ings, as we also observed substantial decoding accuracy within the 
FG-faces and pSTS-faces regions for facial expressions. However, our 
investigation revealed that the LO-faces and IP-faces regions exhibited 
even greater accuracy in decoding facial expressions compared to the 
FG-faces and pSTS-faces regions. Additionally, we discovered a signifi-
cant correlation between behavioral responses and neural activity 
within the LO-faces and IP-faces regions during a specific time window 
of approximately 100–400 ms, which was not observed within the 
FG-faces and lpSTS-faces regions. These findings suggested that the 
face-selective regions within the occipital-parietal pathway (LO and IP) 
may play a pivotal role in the discrimination of facial expressions, an 
aspect that has been overlooked in previous studies. Consequently, our 
results offered a novel perspective on the processing of facial expressions 
within the human brain. 

One particularly noteworthy finding of our study was that the re-
sponses in the LO-faces and IP-faces regions exhibited a category-based 
representation rather than an image-based representation, even at an 
early stage of processing (~100 ms). This study is the first to investigate 
time course of the nature of representations in these specific regions of 
interest for the discrimination of facial expressions. Previous studies 
have primarily focused on object and face identity discrimination. For 
example, Cichy et al. (2016)Cichy et al., 2016a compared the similarity 
of representations between fMRI data and deep neural networks and 
found that the occipital lobe primarily processes low-level image prop-
erties, while the more anterior regions in the parietal and temporal lobes 
are responsible for abstract and category information in object recog-
nition. In the case of face identity, the occipital lobe was predominantly 
associated with low-level image properties captured by GIST descriptors 
(Tsantani et al., 2021; Weibert et al., 2018) or Gabor-Jet models 

(Tsantani et al., 2021), while the FFA primarily processes high-level 
properties such as perceived visual similarity and social traits (Tsan-
tani et al., 2021) and high-level deep features extracted using deep 
neural networks (Cichy, Khosla, et al., 2016). These studies support a 
hierarchical organization of face-selective regions in existing face pro-
cessing models (Duchaine and Yovel, 2015; Haxby et al., 2000), with the 
OFA specializing in low-level image properties and the FFA processing 
higher-level visual features and other social information. Additionally, 
Vida et al. (2017) demonstrated that LO-faces and FG-faces encode 
image-based and identity-based representation at different stages of 
processing. However, our findings did not support a hierarchical model 
for facial expression discrimination, as the data from the LO-faces and 
IP-faces regions consistently exhibited a category-based representation 
rather than an image-level representation between ~100 and 400 ms. 

Due to the rapid and robust representation of facial expression in the 
LO-faces and IP-faces, it suggests that the occipital-parietal pathways 
play a role in facial expression discrimination. Recognizing facial 
expression involves specific processing that is, to some extent, separable 
from other aspects of face recognition (Bruce and Young, 1986). A 
previous study has also demonstrated that the ability to recognize facial 
expressions is preserved in patients with both prosopagnosia and 
cortical blindness ((Duchaine and Nakayama, 2003)). Researches have 
proposed that the pSTS along the lateral visual pathway and the FFA 
within the ventral pathway, which receives inputs from the OFA, play 
roles in recognizing and decoding facial expressions (Liang et al., 2017; 
Wegrzyn et al., 2015). Our findings indicated that, in addition to the 
ventral and lateral pathways, the IP cortex, which receives input from 
the occipito-parietal cortex, also plays a role in recognizing facial ex-
pressions as part of the dorsal pathway. These findings further supported 
previous empirical studies, such as Baroni et al.’s research using intra-
cranial electrodes to decode faces, which found that certain electrodes in 
the bilateral IP were capable of successfully classifying faces (Baroni 
et al., 2017). There is also evidence that the damage to the IP affected 
the performance of facial expression recognition (Adolphs et al., 1996, 
2000). At the same time, it is crucial to understand the general role of the 
IP in recognizing expressions. Previous research on the inferior parietal 
cortex has primarily focused on its role in representing actions rather 
than decoding facial expressions (Ester et al., 2020; Freud et al., 2020; 
Kravitz et al., 2011). Our study highlighted the unique role of the IP 
region in decoding facial expressions, which has been overlooked. We 
postulated that facial expression can be considered as a distinct form of 
action, characterized by facial expression activities that primarily 
manifest in the facial region. Consequently, we propose that the IP re-
gion may encode patterns of these expression actions. However, it is 
imperative to validate this hypothesis through further comprehensive 
investigations. 

While our study provided valuable insights, it is important to 
acknowledge its limitations. Firstly, one may question whether the 
neural responses observed in the face-selective regions of our study align 
with those typically identified in fMRI studies of face processing. 
Although the source points within LO-faces, IP-faces, FG-faces, and 
pSTS-faces in our study are located within the same anatomical sub-
regions as OFA, IP, FFA, and pSTS, respectively, there may still be var-
iations in their neural representations. Several factors can contribute to 
this variability. The projection of magnetic field data into brain space 
during MEG source estimation is a mathematically ill-posed problem, 
which inherently limits the spatial accuracy. Additionally, the spatial 
signature of neural current changes across the cortex may depend on the 
specific method used to compute the inverse model. Furthermore, pre-
cise spatial alignment between MEG data and MRI structural imaging is 
crucial for accurate forward solution computation. However, movement 
of the markers on the head during MRI scans can introduce ambiguity in 
spatial comparisons. Second, while multivariate decoding techniques 
offer greater sensitivity to condition-specific differences in neural re-
sponses compared to traditional methods, it is important to consider 
whether the information used for classification is essential for brain 
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computation. Machine-learning algorithms employed in pattern classi-
fication do not aim to simulate the brain’s information processing 
mechanisms. Instead, they assess statistical dependencies between 
stimuli and response patterns. Moreover, successful classifications using 
linear and nonlinear classifiers require sufficient input from different 
conditions to prevent overfitting. However, small sample sizes are often 
sufficient in human brain computation. Therefore, it remains unclear 
whether decoding-based inferences truly reflect the computational 
mechanisms in the human brain. 

5. Conclusions 

In conclusion, we utilized MVPA and a trained CNN to investigate the 
temporal representation of emotional faces in face-selective regions. Our 
findings demonstrated that neural data in the LO-faces, IP-faces, FG- 
faces, and pSTS-faces exhibit early discrimination of facial expression, 
occurring within approximately 100–150 ms after the onset of the 
stimulus. Importantly, even at this early time point (~100 ms), LO-faces 
and IP-faces predominantly processed emotional category information 
rather than spatial information of facial expressions. Furthermore, our 
results highlighted the ability of LO-faces and IP-faces in discriminating 
facial expressions compared to STS-faces and FG-faces. This study pre-
sented novel insights and challenges the existing understanding of facial 
expression processing in the brain. 
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