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In chronic pain rehabilitation, physiotherapists adapt physical activity to patients’ performance based on their expression

of protective behavior, gradually exposing them to feared but harmless and essential everyday activities. As rehabilitation

moves outside the clinic, technology should automatically detect such behavior to provide similar support. Previous works

have shown the feasibility of automatic protective behavior detection (PBD) within a specific activity. In this article, we

investigate the use of deep learning for PBD across activity types, using wearable motion capture and surface electromyo-

graphy data collected from healthy participants and people with chronic pain. We approach the problem by continuously

detecting protective behavior within an activity rather than estimating its overall presence. The best performance reaches

mean F1 score of 0.82 with leave-one-subject-out cross validation. When protective behavior is modeled per activity type,

performance achieves a mean F1 score of 0.77 for bend-down, 0.81 for one-leg-stand, 0.72 for sit-to-stand, 0.83 for stand-

to-sit, and 0.67 for reach-forward. This performance reaches excellent level of agreement with the average experts’ rating

performance suggesting potential for personalized chronic pain management at home. We analyze various parameters char-

acterizing our approach to understand how the results could generalize to other PBD datasets and different levels of ground

truth granularity.
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1 INTRODUCTION

Body sensing technology provides new possibilities for physical rehabilitation because it is accessible outside
of clinic settings and enables personalized feedback for patients. In this article, we address the possibility of
augmenting such technology to deal with psychological factors in long-term conditions such as chronic pain

(CP). Specifically, we aim to create technology that can infer the psychological states of people by detecting pain-
related behavior across different activity types. Detecting such behavior would enable technology to provide
feedback, suggestions, and support during self-directed rehabilitation.

Physical rehabilitation is an important part of the management of CP, which is a condition where pain asso-
ciated with dysfunctional changes in the nervous system persists and leads to reduced engagement in everyday
functional activities despite lack of injury or tissue damage [7, 53, 57]. According to the fear-avoidance theory,
reduced engagement, and other maladaptive strategies (collectively referred to as pain behaviors) such as pro-
tective behaviors [54], are a result of fear of pain, activity, or injury due to wrong association of harmless activity
with pain [49, 57]. During clinical rehabilitation sessions in pain management programs, physiotherapists adapt
their feedback and activity plan according to the protective behaviors that a patient exhibits [44, 45]. As most
aspects of CP physical rehabilitation are increasingly based on self-management at home, technology capable
of detecting these behaviors could provide such affect-based personalized support and activity plans [46]. Sev-
eral studies in this area have shown the feasibility of detecting the overall presence of protective behavior for a
specific activity [6, 34–36]. However, technology for CP self-management needs to be activity independent, as
people have to engage in different activity types during their daily life without predefining them.

With comprehensive experiments on the EmoPain dataset [6] comprising wearable inertial measurement

units (IMUs) and surface electromyography (sEMG) data of people with CP and healthy participants, our
work establishes important benchmark results for activity-independent protective behavior detection (PBD).
We further analyze various data preparation parameters in this study to expand our knowledge about using deep
learning for PBD and provide informative takeaways for future studies. Extending our previous work [11],1 the
contributions are fourfold:

• We extend the state-of-the-art by showing the feasibility of PBD using deep learning across activities and
in a more continuous manner. This moves the field one step closer to being able to continuously detect
pain-relevant behavior in everyday life without knowing the type of activity in advance.

• A set of data augmentation methods and combinations is investigated for dealing with the limited size of
the existing dataset. An analysis and discussion of these methods shed light on how each of them could
contribute to PBD beyond our dataset.

• The impact of data segmentation parameters on detection performance is also analyzed. Despite the op-
timal segmentation window length for PBD being dependent on the activity type, we provide a set of
criteria to identify values for this parameter that work across different activities, showing how our ap-
proach could generalize to other datasets for PBD.

• The robustness of our approach across different ground truth definitions is additionally explored. Com-
petitive performances are achieved with our approach in discriminating protective and non-protective be-
havior, whereas the performance is above chance level in recognizing events with more uncertain ground
truth.

2 CATEGORIES OF PROTECTIVE BEHAVIOR

Protective behaviors have been highlighted as observable bodily expressed pain behavior that can provide insight
into subjective pain experiences, and so inform intervention [47, 54]. First, they are significantly correlated with

1This work extends our research presented at the 23rd ACM International Symposium on Wearable Computers (ISWC’19) [11].

ACM Transactions on Computing for Healthcare, Vol. 2, No. 3, Article 23. Publication date: July 2021.



Chronic Pain Protective Behavior Detection with Deep Learning • 23:3

Table 1. Five Categories of the Protective Behavior

Behavior Category Definition
Guarding/Stiffness Stiff, interrupted, or rigid movement.
Hesitation Stopping partway through a continuous movement with the movement

appearing broken into stages.
Support/Bracing Position in which a limb supports and maintains an abnormal distribution

of weight during a movement that could be done without support.
Jerky Motion Any sudden movement extraneous to be intended motion; not a pause as

in hesitation.
Rubbing/Stimulation Massaging or touching an affected body part with another body part or

shaking hands or legs.

self-reported pain and fear-related beliefs [51, 54]. Further, unlike facial and vocal expressions that primarily are
communicative, protective behaviors are more reflective of perceived physical demand [47].

A systematic analysis of protective behavior was conducted by Keefe and Block [54]. Using trained observers
to manually label videos of patients performing specific activities [47, 54], they showed that defined protective
behaviors (Table 1 presents a more detailed description about categories of protective behavior referred to in
other works [6, 54]) were exhibited by people with CP, and tracking them is valuable for understanding how well
a person with CP is coping with the condition and engagement in everyday life. Unfortunately, domain-expert
visual assessment is expensive and impractical given the prevalence of CP [26, 56]. Constraining observation
to clinical settings where a patient’s behavior may be altered [9] does not address abilities (or struggles) in
more complex everyday functioning. As such, the need to better understand such behavior in real life has led to
consideration of technology as a way to monitor protective behavior [38, 39]. However, existing approaches have
been limited to monitoring of coarse behaviors, such as studying how far and where a person moves with respect
to the person’s home using Fitbit and GPS-based techniques [46]. The findings from this study showed limited
correlations with key affective variables that characterized the ability of the person to self-manage conditions.
There has been further evidence in the literature, critiqued this work, that it is not only the quantity of the
activity that matters but also the quality of movement and the type of avoided movements or postures that
provide insight into the ability of the person with CP to cope with and manage the condition [44].

In addition, as physical rehabilitation in chronic conditions transitions from clinician directed into self-
managed [37] (in the form of self-managed activities or functional tasks such as loading the washing machine
[46]), visual inspection becomes unfeasible. However, self-report of pain behaviors [9] in everyday functioning
is unreliable because people with CP may not be conscious of their responses to pain or feared situations [46].
More importantly, self-report does not allow for fine-grained measurement, which is necessary for insight into
subjective experiences [15, 54] and for informing adaptation of activity plans or other forms of feedback (e.g.,
timely reminders to breathe deeply to reduce tension). Despite its limitation, the systematic analysis of activity
proposed in the preceding pain literature suggests that protective behavior can be automatically detected and
such capability could be embedded in a self-directed rehabilitation system.

3 RELATED WORKS

Here we summarize relevant works on pain behavior and studies that have used deep learning for human activity
analysis.

3.1 Pain-Related Behavior Analysis

The use of body movement as a modality for automatic pain-related detection has been largely ignored even
though bodily behaviors such as protective behaviors are more pertinent to pain experiences than facial or vocal
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expressions [47]. The relevance of the body lies in its indication of action tendency, which in the case of pain is
to protect against self-perceived harm or injury [1, 47]. The body is an effective modality for automatic detection
of affect, although most of the work in this area has been focused on the so-called basic affective states (for a
survey, see the work of Kleinsmith et al. [24, 25]).

The majority of the work done on automatic detection of pain behavior has been on automatic differentiation
of people with CP from healthy control participants, as in the studies of Ahern et al. [3], Grip et al. [16], and
Watson et al. [51] for CP of the knee, lower back, and neck, respectively. Dickey et al. [13] and Olugbade et al.
[34, 35] further discriminate levels of self-reported pain within people with low back pain. A common finding in
these studies is that the way a person with CP uses (or avoids the use of) a painful anatomical segment provides
information about subjective experiences. Olugbade et al. [36] investigated movement behaviors that clinicians
use in judging pain-related self-efficacy and showed the feasibility of automatic detection based on these cues.
Olugbade et al. [36] further provides evidence that low-cost body sensing technology can enable the detection
of pain-related experiences in functional activities.

More relevant to our work is that of Aung et al. [6], where the authors present the EmoPain dataset (also used
by Olugbade et al. [34–36]), which includes IMUs and sEMG data recorded while people with CP and healthy
participants performed movements reflective of everyday activities typically challenging for this cohort. The
authors used the range of angles for 13 full-body joints (as the middle joints), the mean energy for these joints,
and the mean sEMG recorded bilaterally from the lower and upper back muscles for each complete instance of a
movement type to predict the proportion of the instance that was protective. They used Random Forest (RF),
and the ground truth was based on mean ratings across four expert raters: two physiotherapists and two clinical
psychologists. They obtained between 0.019 and 0.034 mean squared error (mean = 0.027, standard deviation =
0.005) across the five activities; however, Pearson’s correlation was between 0.16 and 0.71 (mean = 0.44, stan-
dard deviation = 0.16). The low correlation despite low error suggests that although the predicted values were
close to the ground truth, these errors are not consistent in their direction (positive vs. negative). Previous clas-
sification of a subset of these data focusing on two movement types achieved better F1 scores of 0.81 and 0.73,
respectively [5].

One important limitation of the preceding studies is that separate models were built for different types of
activity, requiring prior knowledge about the activity in advance. In addition, the detection was only per overall
activity and the temporal information inherent to protective behavior was not leveraged. In this article, we build
on these studies by investigating PBD based on one classification model that works across different activities.

3.2 Deep Learning for Human Activity Analysis

Deep learning is currently the leading approach in many previously challenging tasks, with increasing use in
healthcare [33]. As far as we know, studies using this method in the area of automatic detection of pain behavior
have mainly focused on detection from facial expressions. Much of these have been facilitated by the publicly
available UNBC-McMaster database [30], which contains about 200 sequences of more than 40,000 face images
collected from 25 people with shoulder pain [40] during a variety of physiotherapist-guided activities.

Findings in human activity recognition point to the efficacy of convolutional and LSTM networks with body
movement data. For example, Hammerla et al. [20] used a bidirectional LSTM network (bi-LSTM) to clas-
sify physical activities in the Opportunity [10] and PAMAP2 [42] datasets. They obtained mean F1 scores of
0.75 and 0.94 on the two datasets, respectively, using leave-some-subjects-out (LSSO) cross validation. In this
study, data samples were frames of lengths of 1 and 5.12 seconds, with overlapping ratio of 50% and 78%, respec-
tively, from the activity instances. Yu et al. [19] achieved mean F1 scores of 0.73 and 0.85 based on LSSO cross
validation, respectively, on the same datasets using an ensemble of two-layer LSTM networks with dropouts
after each layer. This method further led to mean a F1 score of 0.92 on the Skoda dataset [14]. In particular,
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they proposed to train the model with data segmented with multiple window lengths in a bootstrapping man-
ner while the inference was conducted directly on each single timestep/sample. Morales et al. [31] used a stack
of two convolutional layers followed by max pooling, one (more) convolutional layer, LSTM layers, and dense
(with softmax activation) layers trained on the Opportunity dataset to classify the activities in the Skoda dataset.
Hammerla et al. [20] further used a three-layer LSTM network to automatically detect freezing behavior in 10
people with Parkinson’s disease while they performed everyday activities, using data from the Daphnet Gait [8]
dataset. Based on motion capture data from around the ankle, knee, and trunk, they obtained a mean F1 score
of 0.76 with LSSO cross validation. Given the similarity of the problem we address in this article and theirs, we
focus on an LSTM network for automatic detection of protective behavior and compare its performance with
other variants used in previous studies.

There are few other studies where the detection of anomalous movement behaviors (e.g., due to a medical
condition) have been investigated. Such tasks are more challenging because these behaviors are embedded, as
modulations [28], in the performance of physical activity. One of these works is from Rad et al. [41], who used
a network of three convolutional layers, each followed by an average pooling layer, on motion capture data
in the stereotypical motor movements [4, 18] dataset recorded from the wrists and chest of six people with
autism spectrum disorder. Their goal was to detect stereotypical movements within window lengths of 1 second
(overlapping ratio of 87%). The stereotypical motor movements dataset contains two streams of data with one
stream collected in the lab and the other in classroom, and their result of a mean F1 score of 0.74 with the lab
data outperformed the traditional feature engineering method with Support Vector Machines and RF used in
other works [4, 18]. Unsurprisingly, the average F1 score obtained was only around 0.5 with the classroom data,
where movements are less constrained, although the poorer performance may also be due to smaller data size.

Beyond the greater challenge of detecting anomalous movement behaviors (compared to the recognition of
physical activity types) in data from real patients, such an area also faces the difficulty of obtaining a large volume
of training data for the positive class(es) (e.g., [43]), leading to considerable skew in the datasets that exist, and
also constraining the use of deep neural network models. Although LSTM networks show a lot of promise based
on our review, care must be taken in relation to how the input data is formatted, particularly in the approach
taken to segment the data along the temporal dimension. Previous works, such as the studies discussed earlier,
have employed a sliding-window segmentation, where most training data are length-fixed frames. This method
is suitable for real-time applications because it enables detection in small continuous streams of data through
time. As far as we know, except for Yu et al. [19] who used dynamic window lengths to generate training data,
there has been little discussion or justification for choices of segmentation parameters, such as the length of the
window, even though these are strongly related to system performance [23]. We address this problem in this
article. To support our discussion on window parameters, the idea raised from Yu et al. [19] about training with
dynamic frames and inferring on single timesteps is also investigated.

4 METHOD

In this section, we first define the research scope by giving several considerations and respective solutions. Then,
we describe in detail the network architectures.

4.1 Design Considerations

Toward using neural networks for PBD, our research scope is defined by the following considerations:

• Independent on activity type: To enable activity-independent PBD, we input only the low-level features
computed from the raw IMUs and sEMG data, without relying on the relation between the performed
activity and presented protective behavior.
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Fig. 1. The stacked-LSTM network structure.

• Modeling temporal nature: Given that IMUs and sEMG data are typically formatted in temporal sequences
and that the volume of labeled data (e.g., the EmoPain dataset used in this study) is quite limited, a shallow
recurrent neural network (RNN) architecture is adopted to detect protective behavior.

• Emphasis on per-activity continuous detection: As protective behavior is exhibited along with the execution
of specific activity, and physiotherapists make the judgment based on the patient’s performance during
activity, our work is aimed at automatically detecting such behavior within instances of activity.

4.2 Stacked-LSTM and Dual-Stream LSTM Networks

Unlike the convolutional neural network (CNN), which is powerful for extracting spatial information, RNNs
have shown good capability for the learning from time-dependent data sequences. Past experience [19, 20] has
been that RNNs, particularly LSTM networks, outperform other network architectures like CNN on processing
temporal sequences collected with wearable sensors. Given the inherent dynamic nature of motion capture and
sEMG data, we use this RNN structure to build our network. A typical forward RNN structure that connects in
forward time is shown in Figure 1, with the input as a temporal sequence and computed state information passing
forward along the network. The core of any RNN architecture is the processing unit, which is an LSTM unit in
this study. Now a widely applied processing unit in RNNs, the LSTM [21] solved the vanishing gradient problem
that traditional RNNs faced in back-propagation over a long temporal sequence. Every LSTM unit updates its
internal states based on current input and previously stored information [21]. To extract temporal information
in a direction natural to the expression of protective behavior in physical activities, we focus on forward infor-
mation pass in our architecture. The LSTM unit that we use in this work is the vanilla variant without peephole
connection [17].

At timestep t , the inputs to the corresponding LSTM unit are the current input data Xt , previous hidden state
Ht−1, and the previous cell state Ct−1, whereas the outputs are the current hidden state Ht and cell state Ct . By
using this strategy, the output of at each timestep is based on the previously consecutive knowledge acquired.
The states are updated with an Input Gate with output it , a Forget Gate with output ft , an Output Gate with
output ot , and a Cell Gate with output c̃t . The computation within an LSTM unit at timestep t is written as

φt = σ (Wxφ Xt +Whφ Ht−1 + bφ ), (1)

c̃t = tanh (Wxc Xt +Whc Ht−1 + bc ) , (2)

where φt ∈ {it , ft , ot }, W( ·) and b( ·) are the weight matrix and bias vector, respectively. σ (·) is the sigmoid
activation. Then, the output of a LSTM unit is computed as

Ct = ft � Ct−1 + it � c̃t , (3)

Ht = ot � tanh(Ct ), (4)
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Fig. 2. The Dual-stream LSTM network where motion capture and sEMG data are processed separately.

where � denotes the Hadamard product. The processing at the next timestep t + 1 would take the current output
Ct and Ht to iterate with the same computation mentioned previously.

We adopt a stacked-LSTM architecture with multiple LSTM layers computing on a single forward direction
as shown in Figure 1. As we examine the parameter impact of the sliding window, the length of the input layer
is adjusted to the length of the input data frame created by each different sliding window size. Using the output
at the last timestep of the last LSTM layer HT in a fully connected softmax layer, the computation of class
probability P = [p1, . . . ,pK ], where K denotes the number of classes (in our case K = 2), and the final one-hot
label prediction Y can be written as

P = so f tmax (WH HT + bH ), (5)

Y = arg max
[1· · ·K ]

(P), (6)

where WH and bH are weight matrix and bias vector of the softmax layer. Sample-wise prediction is also con-
ducted following Yu et al. [19], where each output state Ht is used as input for a fully connected layer with
softmax activation for classification instead of just using the last output HT . For the current single timestep t ,
given similar output of the last LSTM layer as earlier, the computation of class probability Pt = [pt,1, . . . ,pt,K ]
and the one-hot label prediction Yt can be written as follows:

Pt = so f tmax (WH Ht + bH ), (7)

Yt = arg max
[1· · ·K ]

(Pt ). (8)

We further explore a stacked-LSTM network that processes motion capture data and sEMG data separately.
We refer to it as Dual-stream LSTM. As shown in Figure 2, each stream of this network is a stacked-LSTM,
whereas representational layer fusion is conducted at decision level. A comparison with other neural networks
is additionally conducted in this work.

5 EXPERIMENT SETUP

In this section, we first present the EmoPain dataset. Then we discuss our data preprocessing and augmentation
methods, followed by a description of our applied validation methods, metrics, and model implementations.

5.1 The EmoPain Dataset

The EmoPain dataset [6] contains IMU and sEMG data collected from 26 healthy and 22 CP participants perform-
ing physical activities selected by physiotherapists. Healthy participants (non-athletes) were included to capture
natural idiosyncratic ways of moving rather than considering a gold standard model of activity execution that
is no longer an approach used by physiotherapists during rehabilitation. Healthy participants were assumed to
show no protective behavior during the data collection. Although the original dataset contains data from 22
patients, 4 patients were left out because of errors in their sEMG data recordings. To avoid biasing the model
towards healthy participants, 12 healthy people were randomly selected. As a result, the data used in this work
is collected from 12 healthy and 18 CP participants.
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Fig. 3. Avatars in temporal sequences of healthy and CP participants during reach-forward (left) and stand-to-sit and sit-

to-stand (right) in the EmoPain database. The sEMG signal plotted for each avatar sequence is the average upper envelope

of rectified sEMG data collected from two sensors on the lower back.

Examples of protective and non-protective behavior samples from the EmoPain dataset are shown in Figure 3.
These avatars were built directly from participants’ motion capture data and represent instances of activity
from the dataset even though the length of each sequence is not representative of the real duration. The average
upper envelope of the rectified sEMG data collected from two sections on the lower back is also provided for each
avatar sequence, respectively. As shown in Figure 3 (left), for reach-forward, differences between the healthy and
patients exist in stretching ranges and also the different strategies, with the latter simply raising the arms but not
bending forward. We can also observe another strategy with the bottom patient keeping the feet closer together,
making bending more difficult. Often, people with CP are unaware of avoiding facilitating movements/postures,
as their attention is on pain rather than proprioceptive feedback. Protective strategies can also be observed in
the CP participant performing a stand-to-sit in Figure 3 (right). Differently from the top healthy participant, the
CP participant does not bend the trunk but exploits the leg muscles to lower him/herself to the seat, a strategy
further facilitated by twisting the trunk to minimize the use of the left (possibly painful) part of the back. These
are just examples of strategies used by people with CP, as each person personalizes the strategies to his/her
physical capabilities and own understanding of what could be a dangerous movement.

The five activities used in this work are bend-down, one-leg-stand, sit-to-stand, stand-to-sit, and reach-
forward. These were selected by physiotherapists in the development of the EmoPain dataset to represent basic
movements that occur in a variety of daily functional activities (e.g., a person may need to bend to load the dish-
washer or tie the shoes, and stand on one leg to climb stairs or even walk). Given that the activities used in this
work can also be considered as the building blocks for more complex functional activities (e.g., reach-forward vs.
cleaning the kitchen), experiments conducted on this dataset should shed some light into future work using other
relevant datasets that build on these five basic activities in the context of PBD. The rest of the data comprises
transition activities like standing still, sitting still, and walking around. Participants were asked to perform two
trials of the sequence of activities with different levels of difficulty. In each trial, activities were repeated multiple
times, although some CP participants skipped a few repetitions perceived as too demanding (e.g., bend-down).
During the normal trial, participants were free to perform the activity as they pleased—for example, they could
stand on their preferred leg and start the activity at any time they preferred. For the difficult trial, participants
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Fig. 4. The data matrix of a sequence. A1 through A13 are the inner angles, E1 through E13 are the energies, and sEMG1

through sEMG4 are the rectified sEMG data.

Fig. 5. The applied sliding-window segmentation and padding methods. W is the window length, and S is the sliding step.

were asked to start on a prompt from the experimenter, and to carry a 2-kg weight with both hands or in each
hand during reach-forward and bend-down, respectively. These more difficult versions of the same activities
simulated situations where a person is under social pressure to move or is carrying bags. Again, these more dif-
ficult versions are often suggested by physiotherapists to help people with CP gain confidence in moving even
outside the home [47]. As a result, we treat two trials of activities performed by one participant as two different
sequences. Five healthy people and 11 CP patients did activities at both levels of difficulty. Therefore, we have 17
sequences (5 × 2 + 7) from the healthy and 29 sequences (11 × 2 + 7) from CP patients, which make 46 sequences
in total, where each sequence contains all of the selected activities performed by one participant at one level of
difficulty.

5.2 Data Preparation

In this section, we describe the data preprocessing pipeline we apply on the EmoPain dataset to enable the use of
deep learning models. To avoid ambiguity, we clarify that “sequence” refers to the data sequence containing all
activities performed by a subject during one trial, “instance” is the data of a single activity performance, “frame”
is a small segment containing several samples within a data instance, and “sample” is a single data vector at a
single timestep (for our case, it is at 1/60 second as the data sampling rate is 60 Hz).

5.2.1 Low-Level Feature Computation. In the EmoPain dataset, the motion capture data is organized as tem-
poral sequences of 3D coordinates collected from 18 microelectromechanical (MEMS)-based IMUs at 60 Hz. We
computed 13 low-level features suggested in Aung et al. [6] corresponding to 13 joint angles in 3D space based on
the 26 anatomical joints. In addition, we computed 13 “energy” features using the square of the angular velocities
of each angle. Muscle activity captured from four back muscle groups was preprocessed as the upper envelope of
the rectified sEMG data. We therefore have 30 features in total for each sample: 13 joint angles, 13 energies, and
4 sEMG signals from the original dataset. To maintain the temporal order of the data, the data matrix is formed
as Figure 4.

5.2.2 Data Segmentation. Both for the training and testing set, a sliding-window segmentation method [2]
is applied to generate consecutive frames from each activity instance. The parameters related to the sliding
window are justified and analyzed on the basis of the different activity types in a later section. Figure 5 gives
an illustration of the segmentation conducted on a data sequence. The five functional activities are separated by
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transition movements. We segment such instances into frames from each type of activity. Note that the model
does not take the type of activity as an input in the training process but instead aims at generalizing PBD across
all activity types. During segmentation, one issue is to handle edge cases, such as when the sliding window is at
the end of an activity area. We explore three typical ways of handling such a case in the context of sensor data
with an aim to understand their effect on PBD:

• 0-padding, which is to pad the frame with zeroes. This is a typical approach used in activity recognition
in computer vision literature [22, 50].

• Last-padding, which is to use the last sample of that activity and repeatedly add it to the frame.
• Next-padding, which is to use the samples following the activity for padding, as a way to simulate con-

tinuous natural transition between activities.

5.2.3 Data Augmentation. To address the limited size of EmoPain dataset and more generally the difficulty of
capturing naturalistic dataset from patients, especially during the current COVID-19 pandemic, we investigate
the suitability of data augmentation techniques for PBD. Data augmentation is critical for mitigating the risk of
overfitting that rises when applying deep learning on smaller datasets. The three data augmentation methods
explored are as follows:

• Reversing, which is to reuse the data in a temporally reversed direction. This method is proposed because
some activity types in the EmoPain dataset can be thought of as mirror reflections (e.g., stand to sit and
sit to stand).

• Jittering [48], which is to simulate the signal noise that may exist during data capturing. We create the
normal Gaussian noise with three standard deviations of 0.05, 0.1, and 0.15 and globally add them to the
original data, respectively, to create three extra training sets.

• Cropping [48], which is to simulate unexpected data loss. We randomly set the data at random timesteps
for random joint angles to 0 with selection probabilities of 5%, 10%, and 15%, respectively, to create another
three training sets.

Note that the three methods do not change the temporal consistency (in forward or backward direction) of the
data to a noticeable degree. Therefore, the labels stay unchanged. The number of frames after using a combination
of these augmentation methods is increased from ∼3k to ∼21k.

5.2.4 Ground Truth Definition. Rather than discriminating between the specific types of protective behavior
listed in Table 1, we treat them as a single class, referred to as protective behavior, because (1) the primary dis-
crimination that matters in providing personalized support to CP patients is about whether protective behavior
has occurred or not, and (2) the number of instances for each behavior type is too limited to investigate using
deep learning.

According to Aung et al. [6], the labeling of protective behavior in the EmoPain dataset was completed sep-
arately by four expert raters, namely two physiotherapists and two clinical psychologists. Each expert rater
inspected every patient’s video (gathered in synchrony with the IMUs and sEMG data) on-site and marked the
data sample starts and ends where he/she observed each of the protective behaviors. Figure 6 presents a visual-
ization of the coding result of a data sequence of one CP participant. Following a typical approach for building
the ground truth for affective computing [25], based on the sliding-window segmentation, we define the ground
truth of a frame based on majority voting: the frame is labeled as protective if at least two raters each found
at least 50% of the samples within it to be protective. Similarly, a sample within a frame is considered protec-
tive if it is included in the protective period marked by at least two raters. The rationale behind our frame-wise
approach is also that the label of a frame needs to capture the relevant (affective) need within it rather than
merely mathematically encapsulate the labels of the samples within the frame. From the modeling perspective,
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Fig. 6. The visualization of the binary coding for protective behavior by four expert raters.

a system should be trained to detect the salient moments of affective states within a frame rather than to learn
from artificial and pre-segmented positive/negative samples.

5.3 Validations and Metrics

Three different validation methods are used to evaluate PBD performance. First, a sixfold LSSO cross validation
is applied, where at each fold the data of 5 out of the 30 subjects are left out and used for testing. To balance
the number of CP and healthy participants, we ensured that each test fold contains data from three CP and
two healthy participants, respectively. Second, we envision that the use of our model will be in the context of
personal rehabilitation where the model can be further tailored to the same individual, so a cross validation
by leave-some-instances-out (LSIO) is also used, where data (not from the same instances) from a participant
could appear both in training and test sets. Finally, the standard leave-one-subject-out (LOSO) cross validation
is applied to further demonstrate the generalization capabilities of a model to unseen individuals.

Given that PBD is a binary classification problem in our scenario where the detection of both protective and
non-protective behavior is similarly important, we report the mean F1 score as a metric. Furthermore, such a
metric is in line with other works [20] in relevant areas. The mean F1 score Fm is computed as

Fm =
2

|c |
∑

c

prec × recallc
prec + recallc

, (9)

where prec and recallc are the precision and recall ratio of class c = {0, 1} (protective and non-protective). More-
over, for completeness, the accuracy (Acc), mean precision (Pre), mean recall (Re), and confusion matrices are
reported. To further understand how different architectures and parameters compare with each other, we carry
out statistical tests (repeated-measures ANOVA and post hoc paired t-tests) on the LOSO cross-validation results.

5.4 Comparison Methods and Model Implementations

The search on hyperparameters was run for each method compared. Here, we take the stacked-LSTM as an
example to show the general process. When comparing the number of layers, the number of hidden units in
each layer is set to 32, whereas the number of layers is set to 3 when comparing the number of hidden units.
The default segmentation (3 seconds long, 75% overlapping, and 0-padding) and augmentation (jittering and
cropping) are applied. These default parameters have been selected through initial exploration of the data. Results
of the tuning process for the stacked-LSTM are reported in Figure 7. Increasing the number of network layers
(from three layers) or hidden units (from 32 units) led to decrease in performance possibly because they introduce
more training parameters that may have resulted in overfitting given the limited data size. For the Dual-stream
LSTM, three LSTM layers are used in each stream while the number of hidden units of each layer in the motion-
capture stream and sEMG stream is set to 24 and 8, respectively, and each LSTM layer is also followed by a
Dropout layer with probability of 0.5. The weights for loss updating applied to both streams are equal.
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Fig. 7. Justification of the hyperparameters of stacked-LSTM.

All neural network methods used in our experiments employed the Adam optimizer [27] to update the weight,
and the learning rate is fixed to 0.001. The mini-batch size is determined according to the size of the training
set. For all neural network methods, the initial mini-batch size is fixed to 20. The deep learning framework is
implemented using TensorFlow with Keras. The hardware used is a workstation with Intel i7 8700K and Nvidia
RTX 1080 Ti, and the average training time of the stacked-LSTM using the EmoPain dataset after augmentation
is around 15 ms per iteration. For comparison, we use CNN, bi-LSTM, and convolutional LSTM network

(Conv-LSTM) mentioned in elsewhere [20, 31, 41] to show the advantage of using stacked-LSTM. In addition,
we considered the RF used by Aung et al. [5, 6] to model guarding behavior (one category of protective behavior)
in the EmoPain dataset. It should be noted that differently from Aung et al. [5, 6], we performed the modeling
across different activity types. Our default segmentation (3 seconds long, 75% overlapping, and 0-padding) is used
for the comparison experiment. For the RF model, traditional features (clarified in the following) are extracted
from the 3-second frames. Our default augmentation method combining jittering and cropping is applied to the
training data for all of the compared methods. Further details about each architecture compared are provided
next.

CNN [41]. The 3-layer CNN architecture used in this work is implemented according to Rad et al. [41], whereas
the classification result is produced by a softmax layer at final stage instead of using an extra SVM classifier. The
convolution kernel size is 1 × 10, max pooling size is 1 × 2, and number of feature maps is 10.

ConvLSTM [31]. The architecture is the same that was used in the work of Morales et al. [31]. The size of
the convolution kernel is set to 1 × 10, whereas max pooling size is 1 × 2 and the number of feature maps in
convolutional layers and hidden units in LSTM layers is set to 10 and 32, respectively.

bi-LSTM [20]. As an alternative flavor of LSTM network, bi-LSTM utilizes context information in both the
“past” and the “future” to compute the output at each timestep. We implemented the bi-LSTM according to
Hammerla et al. [20]. The hidden units in each LSTM layer is set to 16.

Random Forest [5, 6]. We use an RF algorithm with 30 trees for frame-based detection. We call it RF-frame.
First, we extracted length-fixed feature vectors for each frame, with the total number of feature vector per each
frame computed after augmentation being 18,180. Those feature vectors are further divided into training and
test sets based on the given (LSSO, LSIO, or LOSO) cross-validation method. The features computed comprise
the range of the joint angles, the means of joint acceleration value, and the means of rectified sEMG value, which
were used in the work of Aung et al. [5]. The dimension of the input feature vector was 30.

6 EVALUATION

In this section, we first present the results achieved with stacked-LSTM, Dual-stream LSTM, and the compared
methods, based on the default segmentation (3 seconds long, 75% overlapping, and 0-padding) and augmentation
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Table 2. Comparison Results Using the LSSO, LOSO, and LSIO Cross-Validation Methods

Method LSSO LOSO LSIO
Acc Fm Re Pre Acc Fm Re Pre p-Value Acc Fm Re Pre

RF-frames 0.62 0.55 0.57 0.60 0.72 0.67 0.67 0.74 0.004 0.59 0.54 0.55 0.56
CNN 0.63 0.54 0.56 0.59 0.77 0.70 0.69 0.80 0.003 0.67 0.61 0.61 0.67
ConvLSTM 0.62 0.61 0.61 0.61 0.79 0.77 0.76 0.80 0.032 0.66 0.65 0.67 0.66
Bi-LSTM 0.71 0.69 0.69 0.70 0.80 0.79 0.79 0.80 0.05 0.73 0.72 0.73 0.72
Dual-stream LSTM 0.75 0.74 0.75 0.74 0.80 0.80 0.80 0.79 >0.05 0.73 0.72 0.72 0.72
Stacked-LSTM 0.74 0.73 0.74 0.73 0.83 0.82 0.83 0.81 — 0.75 0.74 0.75 0.74

Best results are marked in bold.

(jittering and cropping) methods. Then, we analyze the use of other padding as well as augmentation methods
and window lengths on PBD for different activity types and across activities. Finally, we investigate the uncer-
tainty in majority-voted ground truth definition.

6.1 Comparison Experiment

The results obtained in the comparison experiment are reported in Table 2. We can see that the stacked-LSTM
achieves a best mean F1 score of 0.82, 0.74 in LOSO and LSIO cross-validations, respectively, whereas Dual-
stream LSTM achieves a best mean F1 score of 0.74 in LSSO. A repeated-measures ANOVA shows significant
difference in performance (LOSO results) between the algorithms: F (0.65, 4.054) = 6.311,p < 0.001, μ2 = 0.179.
Further post hoc paired t-tests with Bonferroni correction (see Table 2) show that the stacked-LSTM performs
significantly better than the RF-frames (p = 0.004) and CNN (p = 0.003). It also shows that bi-LSTM is not signif-
icantly different from stacked-LSTM (at significance level p = 0.05) but is better than RF-frames with marginal
significance (p = 0.061). The Dual-LSTM and Conv-LSTM do not significantly differ in performance with any of
the other methods. These results suggest that stacked-LSTM does indeed provide overall better performance and
that recurrent models like LSTM network are better at processing movement and sEMG data for PBD. Interest-
ingly, the Conv-LSTM performs slightly better than CNN, possibly because it is designed to integrate temporal
information in such data.

For the 18 folds in LOSO cross validation where testing subjects are patients, we further computed two-way
mixed, absolute agreement intraclass correlation (ICC) to compare the level of agreement between the ground
truth (based on labels from the expert raters) and the stacked-LSTM with the level of agreement between the
expert raters. The ICC is a standard method for computing interrater agreement [32]. The absolute agreement
ICC, which we used, measures strict agreement rather than the more liberal similarity between rank order of the
alternative “consensus ICC” [55]. A two-way mixed model was used to account for rater effect [55]. We found
ICC = 0.215 (single measures) and 0.523 (average measures) with p = 4.3 × 10−130 between the raters, and ICC
= 0.568 (single measures) and 0.724 (average measures) with p = 3.1 × 10−159 between stacked-LSTM and the
ground truth based on the labels from these raters. This finding suggests that stacked-LSTM is able to provide
excellent level of agreement [52] with the average expert rater, which aligns with the goal of our modeling.
The agreement is also higher than that between the raters, although this may be explained by the fact that
unlike the raters, whose ratings are based on their independent experiences and background (even if they did
have discussions to resolve rating disagreements), the model’s training is solely based on the average rater’s
labeling.

The confusion matrix for the result achieved with stacked-LSTM in LOSO cross validation is given in Figure 8.
As the model was also running on healthy subjects, protective behavior had been detected in some of the healthy
participants’ frames. In particular, after checking with previous labelers as well as the videos and the data anima-
tions of several specific healthy subjects, we identified various reasons for possible misclassifications: (1) some
healthy participants were not familiar with the activity or instructions from the experimenter and so hesitated
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Fig. 8. Confusion matrix of stacked-LSTM in LOSO cross validation. NP, non-protective; P, protective.

Table 3. PBD Performances (Fm ) Under Three Padding Methods

Padding Method LOSO LSSO LSIO
p-Value with

Next-padding (<0.05)
p-Value with 0-padding

(<0.05)
Last-padding 0.72 0.69 0.66 0.135 0.012
Next-padding 0.79 0.69 0.66 — 0.371
0-padding 0.82 0.73 0.72 0.371 —

when performing, and (2) some were not able to conduct specific activities normally like reaching forward due
to other physical issues, such as obesity, rather than CP.

6.2 Evaluation of Data Preparation Methods

The results in the previous section have shown that activity-independent PBD is feasible and can be carried
out continuously within each instance of activity. In the following sections, we analyze three critical aspects
of our approach (padding, data augmentation, and sliding-window length) to better understand how they may
affect PBD within activity types that build on those similar to the ones presented in the EmoPain dataset. We
adopt the stacked-LSTM (three layers each with 32 hidden units) with default segmentation (3 seconds long,
75% overlapping, and 0-padding) and augmentation (jittering and cropping) methods as the baseline approach
while systematically varying these methods and length values. The results for the default parameters provided
in Section 6.1 will work as a reference rather than as the best in our exploration.

6.2.1 Comparison of Padding Methods. Two other padding methods are explored: Last-padding and Next-
padding. In Last-padding, the last sample of that activity is used to pad the window instead of zeros, whereas in
Next-padding, the samples of the following activity are used.

A repeated-measures ANOVA was carried out to understand if the difference in performance (based on LOSO
mean F1 scores) among the three padding methods are statistically significant. Given that sphericity could not
be assumed (p < .001), Greenhouse-Geiser correction was applied to the degrees of freedom. Results are summa-
rized in Table 3. The results show an effect of padding method on PBD performance (F (1.265, 0.162) = 6.350,p <
0.011, μ2 = 0.180). Further post hoc paired t-tests with Bonferroni corrections show that Last-padding leads to
significantly worse performance than 0-padding (p = 0.012). This could be because by padding with the last sam-
ple, it would seem that the subject is maintaining that last position and “unable” or “unwilling” to move further,
and so appearing as being protective. As zero could be interpreted as a special null value, the 0-padding method
may not suffer from this problem. A competitive performance is achieved with Next-padding with no statisti-
cally significant difference to 0-Padding. Beyond the tuning of the network with 0-padding, the slightly lower
performance with Next-padding could be because many CP participants put clear pauses between each activity.
The significance of the breaks in padding is that they may seem like freezing behavior. In the context of daily
functional activities, we expect that people would be more fluid in their transitions from one activity to another,
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Table 4. PBD Performances (Fm ) under Three Data Augmentation Methods

Augmentation Method Training Size LOSO LSSO LSIO
p-Value with Jittering +

Cropping (< 0.05)
Original ∼3k 0.66 0.55 0.62 0.003
Reversing ∼6k 0.40 0.52 0.53 <0.001
Jittering ∼21k 0.69 0.63 0.67 0.006
Cropping ∼21k 0.66 0.68 0.68 0.001
jittering and cropping ∼21k 0.82 0.73 0.72 —

leading to improved performance with Next-padding. However, as such breaks may actually occur in everyday
functioning for people with CP as they tend to prepare themselves before starting another activity due to the
fear of movement, the Last-padding in this context may correctly bias the model toward protective behavior, for
the activity prior to a given break, suggesting that it possibly could also become an adequate method for this
case.

6.2.2 Comparison of Augmentation Methods. Three additional data augmentation methods are explored: re-
versing, jittering, and cropping. We also considered the use of no augmentation at all. For the jittering method,
standard deviations of 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3 are used. For the cropping method, selection probabili-
ties of 5%, 10%, 15%, 20%, 25%, and 30% are used. A repeated-measures ANOVA showed significant difference
in performance (based on LOSO mean F1 scores) between the augmentation methods (F (0.704, 4) = 6.697,p <
0.001, μ2 = 0.39). The results and p-values computed in post hoc paired t-tests with Bonferroni correction are
reported in Table 4.

Although with a training set larger than that without augmentation, the reversing method shows the worst
performance and is the only augmentation method (of the four explored) that has lower performance than the
baseline without augmentation. This is possibly because the reversing method alters the temporal dynamics
that characterize how protective behavior is presented during an activity. Although all activities included in
the dataset are reversible (e.g., stand-to-sit vs. sit-to-stand or reach-forward (and returning)), the expression of
protective behavior is quite different between such pairs. For instance, in sitting down, people with CP tend to
bend their trunk at the beginning to reach for the seat for support before descending, whereas in standing up,
they avoid bending the trunk due to the fear of pain and mainly push up using their legs and arms. Jittering
or cropping augmentation does not noticeably affect the temporal order of the data. Further, they may simulate
real-life experience of signal noise and accidental data loss.

6.3 Analysis on Sliding-Window Lengths

The boxplots in Figure 9 (left) show the distribution of the duration of each activity in the EmoPain dataset.
The figure suggests that there are notable differences between activities and even between instances within the
same activity, possibly due to different physical and psychological capabilities of participants. Reach-forward
has a large variation that may be because the end point of the activity is much more affected by the capabilities
of the person performing the movement rather than in the middle of just holding the position. Huynh et al.
[23] suggested that the window length needs to be adjusted to different types of activity while the overlapping
ratio is a trade-off between the computation load and the segmentation accuracy. Consequently, we conducted
an independent window length analysis here to investigate the PBD performance with different activity types
based on different window lengths. Further, we carried out an additional experiment to better understand the
effect of window lengths on PBD performance using all activity types. The stacked-LSTM (three LSTM layers
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Fig. 9. (Left) The duration distribution of activity instances in the EmoPain database, where 60 samples = 1 second. (Right)

The impact of sliding-window length on performance in different activity types.

each with 32 hidden units) is used together with our default segmentation (75% overlapping and 0-padding) and
augmentation (jittering and cropping).

6.3.1 Impact of Sliding-Window Length on PBD Performance per Activity. For the first set of experiments with
separate models for each activity type, we explored window lengths from 1 to 7 seconds. It should be noted that
even though the duration of sit-to-stand and stand-to-sit are similar, we treated them as two separate activity
types. This is because, in real life, they are not generally performed consecutively. The mean F1 scores for each
window length are plotted in Figure 9 (right) for each activity type, with a red line showing the average of the
performances over the five activity types.

A repeated-measures ANOVA was run to understand the effect of window lengths and activity types on
PBD performance (mean F1 scores) based on the folds of LSSO cross validation. The results showed an ef-
fect of window length (F = 5.212,p = 0.001, μ2 = 0.173) and of window length and activity type interaction
(F = 3.188,p = 0.01, μ2 = 0.338). Post hoc t-test shows that the window lengths in the range from 2.5 to 4 seconds
show significantly better F1 scores (p < 0.05) than other lengths outside the range except for 5 seconds. How-
ever, the detection at 5 seconds only shows significant difference with 7 seconds (p = 0.01) and is approaching
significantly lower performance than 4 seconds (p = 0.056). We also explored the post hoc t-test for the interac-
tion between window length and activity type; however, this did not show clear statistical differences possibly
due to the limited points for each activity (in each of the six validation folds); still, a few observations should be
made from these results according to Figure 9:

• Although stand-to-sit and sit-to-stand have similarly short duration, detection performances given win-
dow lengths larger than 2.5 seconds differ between the two, and whereas the best performance for sit-
to-stand is 2.5, performance reaches its peak at 4 seconds for stand-to-sit. Such differences could be due
to the 0-padding used in this study; for stand-to-sit, a person generally feels safe after having reached
the chair and he/she then relax, so padding with 0 given larger window lengths may improve or at least
maintain the detection of such non-protective behavior; however, when a person is standing up from a
chair, the protective behavior (e.g., guarding) generally persists at the standing position given the loss
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Table 5. PBD Performance (Fm ) Under Three Sliding-Window

Lengths Across All Activities

Validation Method Activity Type 2.5 s 3 s 4 s
LSSO Bend-down 0.64 0.75 0.75

One-leg-stand 0.77 0.8 0.81
Sit-to-stand 0.72 0.69 0.66
Stand-to-sit 0.71 0.76 0.83

Reach-forward 0.66 0.67 0.67
LOSO All activities 0.78 0.82 0.73

Table 6. PBD Performance (Fm ) Under Different Training-Testing Sets

Training and Testing Set LOSO LSSO LSIO
p-Value
(<0.05)

Frames of 3-second length (default) 0.82 0.74 0.74 —
Train with frames of 3 seconds, test on single timesteps 0.74 0.62 0.61 0.039
Train with frames of 2.5, 3, and 4 seconds, test on single timesteps 0.84 0.67 0.68 0.92

of support, and thus 0-padding at the activity conclusion could interfere with the interpretation of such
behavior.

• Despite the fact that the best performance for one-leg-stand is at window length of 4 seconds, this activity
is less affected by the different window lengths, which could be explained by its characteristic given that
this activity is transient (consists of simply raising and dropping the leg) but is also sustained because the
participant tends to hold the position (possibly oscillating the leg up and down); as such, the performances
remain high across short and long windows.

• Detection on bend-down and reach-forward instead benefits from longer window lengths, possibly be-
cause the bending movement that characterizes them is common to many other activities (e.g., CP partic-
ipants tend to bend the trunk first in sitting down to search for support and normal standing up involves
a bend as well) and so the system needs more information to know how to interpret bending movement.

Given the preceding analysis, we shortlist window lengths of 2.5, 3, and 4 seconds for the activity-independent
PBD exploration reported in the next section.

6.3.2 Impact of Sliding-Window Length on PBD Performance Across Activities. With all of the activity instances
pulled together, we conduct LOSO experiments with the three window lengths (2.5, 3, and 4 seconds). The results
are reported in Table 5. High performance is achieved for all three window lengths, but a repeated-measures
ANOVA showed significant difference in performance (LOSO mean F1 scores) between the three window lengths:
F (0.107, 1.322) = 4.024,p < 0.041, μ2 = 0.122. Post hoc paired t-tests with Bonferroni corrections on the mean
F1 scores show that the 3-second window leads to significantly better performance than the window of 4 seconds
(p = 0.032) but its performance has only marginal significance in comparison with the 2.5-second window (p =
0.075). No statistical differences existed between the performance achieved with the 4- and 2.5-second windows.
Looking further at the results (mean F1 scores) across the 30 subjects, reported in Figure 10 (numbers 1 through
12 represent healthy participants, 13 through 30 represent CP participants), we can notice some length effects:
(1) the detection performances on most control subjects are 100% accurate across the three window lengths,
which could be the result of the imbalanced distribution in the training set where non-protective data take a
bigger proportion or because protective performances of activities tend to be shorter and possibly suffer more
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Fig. 10. Impact of sliding-window length on different subjects. Numbers 1 through 12 represent healthy participants, and

numbers 13 through 30 represent CP participants.

from the padding effect, and (2) the detection results on CP participants fluctuate with window lengths without
a clear pattern, especially for subjects 13, 16, 17, 22, 26, 28, 29, and 30, which highlights some effects of individual
differences on the temporal characteristics of the data as can be also seen in the boxplots in Figure 9 (left), and is
possibly due to the high variability in protective movement strategies and duration of performing each activity
between patients.

Overall, the statistical analyses in the two preceding sets of experiments suggest that (1) longer window lengths
(>2 seconds) are preferred for activity-independent PBD, suggesting that the window needs to capture sufficient
information to discriminate movements necessary to perform an activity and movements related to protective
behavior, but (2) window lengths that are longer than the duration of most activity types suffer from the padding
effect and lead to reduction in performance. Given the representativeness of our dataset and the patient variabil-
ity, we expect that these principles would also apply to other datasets that involve activities that build on the
five basic activities used in this study.

6.3.3 Prediction on Single Timesteps. The training and testing conducted so far is all based on frames, but from
Yu et al. [19] we learned that, for a continuous classification in the HAR scenario, one could try to train the model
with frames of variant lengths and conduct prediction on single timesteps. Here, to maintain the completeness
of this work, we report the results (Table 6) achieved with a similar approach, where frames generated from
different sliding windows (2.5, 3, and 4 seconds) are used for training with prediction done on single timesteps.
Stacked-LSTM with all three validation methods is used. The number frames of each comparison method is the
same to remove the influence of different sizes of training data.

From the results, we can see that (1) training and testing on frames with length of 3 seconds leads to the
best result for LSSO and LSIO cross validations, and (2) training with windows of different lengths is better
than using single window length when testing on a single timestep and achieves the overall best result based
on LOSO cross validation, which implies the impact of frame lengths during the training stage. A repeated-
measures ANOVA showed significant difference in performance (LOSO mean F1 scores) between the three meth-
ods: F (0.081, 2) = 8.645,p < 0.002, μ2 = 0.23. Further, post hoc paired t-tests with Bonferroni corrections on the
mean F1 scores (LOSO) show that training and testing on 3-second frames is significantly better than training
with 3-second frames and testing on single timesteps (p = 0.039), but no significance was found between the
former and training with 2.5-, 3-, and 4-second frame lengths and testing on single timesteps (p = 0.92). Based
on the unique characteristic of protective behavior, the reason for such results can be the inadaptability of con-
ducting prediction on a single timestep as (1) protective behavior is exhibited in an intermittent way along with
the execution of a specific activity, and it is difficult to judge the presence of protective behavior from a sin-
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Table 7. PBD Performance (Fm ) Under Four Ground Truth Definitions

Non-Protective Class(es) Uncertain Class Protective Class Average
Binary-Class Experiment 0.87 — 0.77 0.82
Tri-Class Experiment 1 0.76 0.41 0.72 0.63
Tri-Class Experiment 2 0.71 0.70 0.55 0.65

Quad-Class Experiment 0.79
0.47 (Uncer-1)

0.55 0.55
0.39 (Uncer-2)

gle timestep, and (2) the labeling from experts was created by locating the onset sample and offset sample of a
protective behavior (period) rather than deciding on each single timestep and so the disagreement among labelers
is enlarged in considering the ground truth for a single timestep.

6.4 Modeling the Uncertainty in Ground Truth Definition

For all of the experiments conducted previously, we have used a majority-voting strategy to define the ground
truth of each segmented frame (window). Particularly, a frame was defined as protective only if at least two
raters each labeled more than 50% of samples within it as protective. Therein, a frame not satisfying such criteria
would be treated as non-protective even if at least some samples within it had been labeled as protective by the
raters. This strategy could be problematic, as it ignores uncertainties due to disagreement between raters.

Hence, we explore when the problem is redefined as a tri-class task considering such uncertainties. We con-
ducted two experiments using the three-layer stacked-LSTM adopted in previous sections with our default data
segmentation (3 seconds long, 75% overlapping, and 0-padding) and augmentation (jittering plus cropping). We
focused on three classes: non-protective, protective, and uncertain. For the two tri-class experiments, we specify
a frame as protective only if at least N raters each labeled more than 50% of samples within it as protective. For
Tri-Class Experiment 1, N = 2, whereas N = 3 for the Tri-Class Experiment 2. For the two experiments, a frame
is defined as non-protective only if all raters labeled 0 samples as protective within it, and there is a third class
named “uncertain” for all remaining frames. We do not consider an even stricter definition of the protective
class for two reasons: (1) it would capture only very strong protective behavior leaving out many subtle but
significant instances, and (2) it could also largely reduce the amount of data in the protective class and so hinder
the learning process. Therefore, we decided to explore the two tri-class definitions stated earlier, with one being
more conservative (Tri-Class Experiment 2) than the other, to understand the effect of having more granularity
in the ground truth. LOSO cross validation was used in this section.

The F1 scores for each class of the tri-class experiments and the binary-class experiment conducted in
Section 6.1 (based on LOSO cross validation) are reported in Table 7, with confusion matrices in Figure 11.
We can see that for Tri-Class Experiment 1, both non-protective (F1 score = 0.76) and protective (F1 score = 0.72)
classes show high detection performance despite the increase in complexity with respect to the binary-class
experiment (F1 scores of 0.87 and 0.77, respectively). The recognition of the uncertain class in this experiment
appears to be the most difficult. In Tri-Class Experiment 2, the detection performance for the protective class de-
creases partly because the training size for the uncertain class becomes larger, and this biases the classification.
Such issue could be addressed by further working on a stratified data augmentation of the dataset or by using
penalization mechanisms that reduce the bias toward the larger class as explored in the work of Yin et al. [12].

To further understand the effect of uncertainty on the modeling, we have analyzed the detection performance
for the uncertain class in Tri-Class Experiment 2. For each frame in this class, we have computed the sum of
the ratio of protective labels from each rater, obtaining a value typically between 0 and 3. It should be noted
that frames with ratio sums higher than 3 are to be interpreted as protective. Four overlapping histograms each
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Fig. 11. The confusion matrix for the tri-class experiment 1 (left) and 2 (right).

Fig. 12. (Left) The protective-class labeling ratio distribution of the frames from the uncertain class in Tri-Class Experiment

2. The y-axis is the number of frames. (Right) The confusion matrix for the Quad-Class Experiment.

describing different sets of the ratio sums for the uncertain-class frames are shown in Figure 12 (left) with respect
to different detection outcomes, respectively. It is seen that the overall distribution of the protective samples ratio
for all frames (grey bins) in the uncertain class is bimodal, and that the correctly recognized frames (green bins)
are consistent with this pattern. In addition, we can see that most misclassifications toward the non-protective
class (blue bins) fall mainly on the left side of the histogram (i.e., they are frames considered by most of the
expert raters as mainly non-protective), and thus such misclassifications are not the major error. However, the
misclassifications toward the protective class (orange bins) are spread across the two sides of the histogram.

The bimodal distribution found in the uncertain class led us to perform a third experiment where the uncertain
class is split into two (uncertain-1 and uncertain-2) given the bimodal pattern, with a ratio sum threshold set
to 1.5, so that there are four classes in total. For the Quad-Class Experiment, we used the same three-layer
stacked-LSTM network with the segmentation and augmentation methods stated at the beginning of this section.
The F1 scores are reported in Table 7 with a confusion matrix shown in Figure 12 (right). We can see that the
classification of protective frames is still above chance level despite the limited number of instances for each class
in this experiment. The major errors occur in the two uncertain classes, with misclassifications toward adjacent
classes.

These findings for the uncertain classes suggest that extending our approach to use continuous labels, such
as probabilistic distribution, could be useful and help capture the level of the expert raters’ (dis)agreements for
each frame. A full exploration of how to learn the inter-rater discrepancies within the recognition model (e.g.,
replacing one-hot labels with probabilistic distributions [29]) is promising but outside the scope of this article.
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7 CONCLUSION

This work investigated the possibility of PBD across activity types and continuously within each activity instance
by using IMUs and sEMG data. In our approach to addressing this problem, we explored both CNNs and RNNs.
The work extends our research presented at the 23rd ACM International Symposium on Wearable Computers
(ISWC ’19) [11] by (1) providing more extensive comparisons with traditional methods used in PBD, (2) analyzing
and discussing how different types of data augmentation and padding techniques could affect or support PBD, (3)
extending the analysis of window length parameter to understand how our approach could generalize to other
datasets for PBD, (4) comparing results on single timesteps instead of consecutive frames with and without
bootstrapping training, and (5) analyzing and discussing the robustness of our approach under different levels
of ground truth definition (three-class and four-class experiments) to consider the level of agreement between
raters.

In summary, the best detection result was obtained with a stacked-LSTM, with accuracy and mean F1 score of
0.83 and 0.82, respectively, in LOSO cross validation. If combined with an activity recognition system, our model
can be used to deliver informed feedback during the execution of the activity either during situated exercise
sessions or functional activities. For example, at maximal flexion during a forward reach, when a person with
CP may guard by unhelpfully stiffening the lower back (as shown in Figure 3 (left)) [3], our model can detect
this behavior nearly as soon as it occurs, providing opportunity for just-in-time provision of encouragement
to breathe deeply to facilitate muscle relaxation to the person for example, as a clinician would do. As another
example, if the person demonstrates protective behavior at the start of a sit-to-stand, such as putting the feet
forward and/or placing the hands on the seat for support (as shown in Figure 3 (right)), our model can recognize
this within a few seconds, enabling the technology to almost immediately suggest a more helpful strategy like
using a higher chair until confidence and affective capability are increased, and enables engagement in greater
challenge in the movement scenario.

Analyses on the parameters relevant to our approach were conducted to understand how they affect PBD and
could inform PBD in future datasets. First, we evaluated different approaches to padding in the segmentation
of data streams. The results suggest that it is valuable to use a method that does not introduce confounding
behavior (i.e., data that could be interpreted as protective behavior) in creating the data segments. In our case,
this was 0-padding (the other two we explored were Last-padding and Next-padding), and possibly Next-padding
in the context of full continuous detection. Second, we also compared different data augmentation methods. Our
findings suggest that it may be important to avoid the use of augmentation methods that noticeably affect the
temporal order of the data in a frame (i.e., window). In our experiments, the reversing augmentation method
(which we compared with jittering and cropping methods, as well as no augmentation at all) that altered the
temporal dynamics that may characterize how protective behavior is presented during an activity performed
worse than when no augmentation was done. Third, we explored the effect of the window length used for the
data segmentation and found that the PBD performance generally increased with window length until a certain
peak beyond which performance dropped. This observation could be because shorter lengths provide insufficient
information, whereas larger lengths may suffer because there is more padding, relative to the data present in
the windows. Although we found the optimal window length to vary with activity type, our findings suggest
that good performance across activity types can be achieved using any window length within a small range of
values. The specific range will depend on both the diversity of targeted activities (rather than the specific dataset
used) and the duration of each one. These three sets of insights that emerge from our work in this article that is
based on the EmoPain dataset (and so representative in terms of everyday activities, protective behavior, and the
CP population) contribute a set of criteria to select possible optimal parameter settings for future PBD datasets.
Naturally, we acknowledge that further testing on other datasets would be necessary to fully verify results and
learning for those datasets.
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Finally, we explored different levels of granularity of ground truth definition (i.e., protective, non-protective,
and uncertain classes) based on majority voting. Generally, we found that when they were introduced, uncertain
classes are the most difficult to recognize. Still, competitive average performances were obtained in tri-class and
quad-class PBD (F1 scores of 0.63, 0.65, and 0.55 for two tri-class experiments and one quad-class experiment,
respectively). One of the main findings of this exploration is that continuous labels such as probabilistic distri-
butions may be valuable and feasible for characterizing (dis)agreements between the raters. Our next step will
investigate this.
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