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Abstract—Aiming to develop a more robust and intelligent het-
erogeneous system for adversarial catching in security and res-
cue tasks, in this article, we discuss the specialities of applying
asymmetric self-play and curriculum learning techniques to deal
with the increasing heterogeneity and number of different robots in
modern heterogeneous multirobot systems (HMRS). Our method,
based on actor-critic multiagent reinforcement learning, provides a
framework that can enable cooperative behaviors among heteroge-
neous multirobot teams. This leads to the development of an HMRS
for complex catching scenarios that involve several robot teams and
real-world constraints. We conduct simulated experiments to evalu-
ate different mechanisms’ influence on our method’s performance,
and real-world experiments to assess our system’s performance
in complex real-world catching problems. In addition, a bridging
study is conducted to compare our method with a state-of-the-art
method called S2M2 in heterogeneous catching problems, and our
method performs better in adversarial settings. As a result, we show
that the proposed framework, through fusing asymmetric self-play
and curriculum learning during training, is able to successfully
complete the HMRS catching task under realistic constraints in
both simulation and the real world, thus providing a direction for
future large-scale intelligent security & rescue HMRS.

Index Terms—Asymmetric self-play, catching systems,
heterogeneous multirobot system (HMRS), reinforcement learning
(RL).
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Fig. 1. Illustration of paths generated by different kinds of robots using our
method in the catching scenario. In this scenario, the catching team consists of
three subteams of three types of robots, namely, catcher robots, communication
robots, and observer robots. The catching team needs to act cooperatively to catch
a group of runner robots, surrounding them by intelligently using obstacles and
walls while taking other constraints (e.g., communication, observational limit)
into consideration.

I. INTRODUCTION

V ERY few things in our environment are certain. Apart from
inevitable events, learning and adapting is essential if we

want to make any decisions. The same is also unfortunately
true if we would like to make robotic systems. The dynamic
and unpredictable nature of the world we live in makes it
challenging to have a single type of robot to fit diverse situations.
Consequently, we humans have developed robots like quadruped
robots or quad-copter robots and assembled teams using dif-
ferent heterogeneous robots for complicated tasks. However,
while the number and heterogeneity of robots are growing, the
scientific and engineering challenges of enabling these heteroge-
neous robots to cooperate for the greater good of humanity need
more exploration. As pointed out by Amanda Prorok [2] and
other colleagues in the community [3], communication-enabled
heterogeneous multirobot systems (HMRS) have been viewed as
holding versatility in that each robot in the system can either act
individually or cooperatively for different tasks. Although this
characteristic dramatically extends the feasibility of the systems
to adapt to a different environment for various tasks, the search
space of automatic planning to complete these tasks is large. This
allows us to consider improvements that take more uncertainty,
which is generated by the increasing number and heterogeneity
of robot systems, into consideration. A modern catching system
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made of heterogeneous robots shares the versatility of the HMRS
but it also poses new challenges to the scheduling and planning
algorithms.

Motivated by enabling an intelligent and robust HMRS, this
work explains reasons why an HMRS that is subject to realistic
constraints needs to leverage deep reinforcement learning (DRL)
and other related techniques to solve the adversarial catching
problem, which will further lead to establishing a real-world
heterogeneous system to complete real-world catching
scenarios. Fig. 1 Historically, the task planning and execution
problem is considered hierarchical [4], and this is mainly
because heterogeneous robots first need to identify their “skills”
before communicating and cooperating to complete complicated
tasks. Searching through an exponentially increasing large space
is computationally intractable at scale. On the top layer, when
multiple robots’ skills are generated, a sequential decision-
making process is then required for each robot to interact with
the environment and other robots to complete different tasks. To
make robots perform sequential decision-making is not a trivial
problem due to the necessity of intelligently evaluating different
situations. It requires frameworks spanning from optimization
theory, dynamic programming, game theory, and decentralized
control. As a complementary addition to traditional methods,
using DRL-based approaches could be one of the prominent so-
lutions to take more uncertainties into consideration and largely
reduce humans’ effort to achieve better performance. This is en-
abled by making robots learn through providing reward signals,
and having the deep multiagent RL algorithms learn/optimize a
strategy through trial-and-error experiments. Though one could
argue that designing the reward signals requires some effort
from humans, compared with modeling the complicated system
dynamics, coming up with intuitive rewards is easier.

There were abundant successful studies of solving planning
and control using traditional methods, i.e., optimization and
programming algorithms, but when we are facing an increasing
heterogeneity and number of agents, the challenge in HMRS still
remains. It is mainly because of two reasons. First, DRL-based
algorithms can perform well in planning tasks, especially in
game settings [13], [14]. In recent studies, this still limits the task
that the system can perform. For example, in studies aimed at
generating HMRS’ skills (e.g., trajectories, paths, a sequence of
robot’s actions, etc.), automated planning algorithms [7] and op-
timization algorithms [15] are still used in the decision-making
process. The study of [7] implemented a mission-planning pro-
cedure for collaborative scientific sampling task on a moon-
analogue site. The other work [15] used a scheduling and coordi-
nation mechanism to construct a wall with a predefined structure.
Both works are excellent in their area, but the planning and
decision-making process is only limited to straightforward tasks
and involves less uncertainty. Second, the modeling process in
traditional methods typically takes much more time than the
learning-based methods. There are at least two factors involved.
The first is that, instead of constructing a mathematical model
based on the ideal assumptions, the learning-based methods can
automatically learn with generalization to deal with more dy-
namic situations. The second is that the traditional methods lack

the ability to make abstractions in increasingly complicated task
environments. This, in machine learning terms, is called lack of
the ability of representation learning [16]. Today, when most of
the perceptual methods are deep learning-based, the traditional
planning and control methods need a complementary method
that can interpret similar structures, allowing rich input features
to be taken into consideration. It is more apparent when it comes
to HMRS’ decision-making. For example, artificial intelligence
(AI) systems constructed using traditional methods across mul-
tiple disciplines are proven not to be able to meet human-level
intelligence [17]. The catching problem we consider has been
studied relatively little before, although similar problems have
been studied in tracking problems. In the following text, we will
also include the tracking problem as part of the literature review
for a fair comparison. Table I summarizes classic and recent
state-of-the-art catching/tracking systems and the methods used.
In order to achieve a higher level of intelligence and to deal with a
larger number of agents in modern HMRS, we take the liberty of
using a deep learning-based approach for our tracking/catching
system. Though people have thought of using the RL-based
method for the decision-making processes of HMRS, it was
mainly on a conceptual level or just for homogeneous multirobot
systems. For example, in this survey [13], the authors mentioned
that different Markov decision process (MDP) frameworks can
be used for the decision-making process and have the potential
to be used in the HMRS. However, using multiagent RL in
real world on HMRS still has problems to solve. This is on
account of two aspects. The first aspect is that the presence of
the heterogeneity in the system increases the training difficulty
due to the increased complexity in cross-team and intrateam
collaborative patterns. The second aspect is that the uncertainty
in the real world causes the application of real-world RL to be
hard, meaning balancing the training process to make it flexible
enough in the real world is not easy. These problems together
make it difficult to see multiagent RL algorithms applied in
real-world HMRS. In practice, for real-world HMRS, only a few
branches of methods are used. For example, in one branch, the
traditional methods, like search-and-retrieval behavioral com-
ponents [5] or sensor-feedback algorithms [18], are based on
human-designed state machines. This branch lacks some level
of flexibility. The other branches include swarm intelligence [19]
and partially observable stochastic games. These methods can
meet the requirements of scalability but not cooperative intel-
ligence. One notable implementation of cooperative behavior
is the blockchain-based cooperation strategy [20] but it has
not demonstrated the method’s ability to handle heterogeneity.
According to [13], on different measures, the decentralized
partially observable Markov decision process (Dec-POMDP)
modeled HMRS can complement the traditional methods (e.g.,
swarm intelligence, graph-theoretic models) to achieve a high
level of heterogeneity. Increasing the scalability while maintain-
ing the heterogeneity of the multirobot system needs different
DRL techniques to be utilized. To enable a more complex
heterogeneous system in the future, in this work, we would
like to answer two key questions related to the development
of complicated HMRS.
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TABLE I
CLASSIC AND RECENT STATE-OF-THE-ART HMRS FOR CATCHING-LIKE TASKS

1) How to enable cooperation within a homogeneous robot
team and between heterogeneous robot teams?

2) How to balance the learning complexity and the level of
intelligence of the heterogeneous robot teams?

To show the ability of our framework, we demonstrate it
through an implementation of HMRS in complicated catching
scenarios with real-world constraints. Compared with other
catching-like (tracking) research, our work is distinct from them
in three ways. 1) We focus on a final real-world heterogeneous
setting. 2) We consider both intrateam and cross-team cooper-
ation with more than two teams of robots. 3) We examine the
situation where the opponents can also escape intelligently. As
far as we know, we are the first to consider real-world catching
scenarios with more than two intelligent robot teams, especially
in the case of having opponents also escaping intelligently.
Table I summarizes the differences between our work and recent
catching-like real-world HRMS. Section II-2) explains this table
in detail.

In summary, we would like to argue that, to meet the complex-
ity and dynamics of modern tasks, it is of great importance to
consider adding a data-driven RL-based framework to establish
a robust and intelligent HMRS. In addition, the asymmetric
self-play mechanism in RL could be a convenient way to en-
able intelligent cooperation of different teams of heterogeneous
robots, thus reducing the computation needed for the planning
of heterogeneous robotic systems for real-world applications.1

More specifically, the contributions we made are as follows.
1) We show how to model a team of heterogeneous robots un-

der the deep multiagent RL framework to have intrateam
and cross-team cooperation under realistic constraints in
a complicated catching scenario. This provides some im-
portant insight for the future development of large-scale
intelligent security and rescue HMRS.

2) To tackle the difficulties in training, we researched and
fused two DRL techniques, namely, an asymmetric self-
play method and a curriculum-based training strategy,
in developing this system. We found that our proposed
framework is especially suited as a method to elicit the

1A video version of our presentation could be found with link: https://youtu.
be/tPn4RxMPmiY

intelligence of HMRS while being able to remain trainable
for the learning process of the dynamic catching scenarios
of HMRS.

3) To show that our design is both implementable in simu-
lation and in the real world, we conducted real-world ex-
periments consisting of three heterogeneous robot teams,
including three catcher robots, two observer robots, and
a communication robot, together with runner robots as
opponents. We also analyzed performance differences be-
tween simulated and real-world experiments.

II. RELATED WORK

Our work is related to different fields of study. Here we con-
duct our literature review on different aspects, namely multirobot
systems, catching-like problems, DRL, and the combined DRL
techniques (i.e., asymmetric self-play and curriculum learning).
The first two aspects are more related to the multirobot system
and its applications. The latter two are more related to the
methods we used in this study.

1) Multirobot Systems: Multirobot systems have turned out
to be a very interesting field of robotics in recent years along
with the development of computing systems’ arithmetic and
communication capabilities [13]. As time passed, all aspects
of multirobot systems began to be considered. Whether it is task
assignment from the top level or motor control learning from the
bottom level, the complexity of multirobot systems has called
new challenges to roboticists, ranging from multirobot task
allocation [21], [22], path planning [23], [24] to exploration [25],
[26]. However, except for limited works on heterogeneous set-
tings (e.g., [2], [13], [27], [28], [29]), most of the multirobot
problems focused on homogeneous settings. We conducted a
systematic search of the relevant literature on heterogeneous
multiple robots and found that research in this area is still
mainly based on splitting the problem of heterogeneous robot
control into multiple aspects, such as the “Workflow for the
MRS” proposed in [13], [30]. In terms of applications, people
studied agricultural scenarios [31], [32], SLAM [33], [34], and
exploration [35].

2) Catching/Tracking Problem and its Heterogeneous Mul-
tirobot Variants: The catching problem was studied mainly by

https://youtu.be/tPn4RxMPmiY
https://youtu.be/tPn4RxMPmiY
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the single-robot community, with the manipulator as a major
robot in the applications [36], [37]. When it comes to multirobot
systems, a few works including [9], [38] scarcely considered the
catching problem. Compared with our work, they only studied
the homogenous swarm robots with physical quantities as ob-
servations. The moving target in this work is preprogrammed
and nonintelligent. Unlike the catching problem, the tracking
problem was one of the great concerns of robotics during its
initial development. At that time, the overarching field was still
called cybernetics and pioneered by Norbert Wiener and W.
Ross Ashby [39], [40]. Considering that it is only less than 60
years since the idea was first proposed, it is amazing to see that
along with the development of other technologies, the tracking
problem has been given a new meaning. For example, people not
only have considered different tracking observations including
camera-based (e.g., [41], [42]) or LiDAR-based (e.g., [43], [44])
devices but also have considered more sophisticated tracking
systems. In recent years, as more and more devices are equipped
with reliable communication methods, systems like grouped
unmanned aerial vehicles (UAVs) [45] or modular robots [46]
are also used for tracking. Due to the tradeoff between scalability
and heterogeneity, previous works discussing the real-world in-
telligent cooperation between multiple heterogeneous teams of
robots were mainly limited to two kinds of robots, e.g., wheeled
robots teams and quad-copter robots teams. They normally focus
on simpler tasks like coalition formation [13]. Table I com-
pares different recent real-world catching/tracking-like tasks
with our system. Not only our system can achieve intrateam and
cross-team cooperation, but our system can deal with adversar-
ial tracked objects intelligently. With the capability to include
complex constraints, our system also plans the cooperation of
all teams holistically, meaning that our system processes the
advantages of simplicity and has a lower degree of dependency
on domain experts [47]. The tracking problem is also studied
in the area of multiagent path finding, with the evaluations
normally limited to simulations. To date, the optimization-based
methods, which are evolved from conflict-based search [48] or
priority-based search [49], claim to have the ability to perform
the reach-avoid behavior in continuous planning for multiple
agents [1]. To evaluate the performance of this state-of-the-art
algorithm in the multiagent path finding problem in our scenario,
we conduct a bridging study to compare its performance with
our approach.

3) Multiagent Deep Reinforcement Learning Algorithms:
Reinforcement learning (RL) has been used since the early days
of robotics. Over years, the RL has been applied to different
areas of robotics, including path planning [50], collision avoid-
ance [51], robot control [52], vision representation learning [53],
and so on. Together with the emergence of different machine
learning techniques like meta learning or architectures like
transformer [54], people are able to develop more and more com-
plicated robot systems. For the purpose of enabling cooperative
behaviors among robots, people started to also develop algo-
rithms that can attribute rewards more efficiently within the agent
groups. Famous examples include MA-PPO [55] which was able
to train a five-agent team to win a competition against humans.
Other algorithms include QMIX [56] and QPLEX [57] that can

be used for different multiagent scenarios. The cooperation-
aware algorithm we are using is called multiagent posthumous
credit assignment (MA-POCA) [58]. Compared with single
agent DRL algorithms, this algorithm analyzes the reward sig-
nals and assigns them to different agents for their corresponding
performance and inherited the idea of counterfactual baseline
in the COMA algorithm [59], [60]. The MA-POCA algorithm
can add/remove robots dynamically during training. This is
achieved by utilizing a residual self-attention mechanism, which
is architecturally similar to those used in the vanilla Transformer
architecture but without positional encodings. Moreover, the
MA-POCA algorithm also follows the centralized training and
decentralized execution (CTDE) paradigm, allowing intelligent
cooperation during the training, and decentralized deployment
for scalability [61] during execution.

4) Asymmetric Self-Play and Curriculum Learning: We fur-
ther extend the multiagent RL algorithms mentioned above with
a combination of asymmetric self-play and curriculum learning
to achieve training of our catching HMRS. The self-play mecha-
nism has been studied in the area of the game for more than half
a century [62], [63]. After years of development, it is now one
of the mechanisms that enabled many state-of-the-art intelligent
systems like AlphaGo [64]. In robotics, many works have further
extended the basic self-play mechanism and used its asymmetric
version for different applications. For example, the authors
in [65], [66], and [67] used asymmetric self-play for automatic
curriculum learning and [66] used asymmetric self-play for robot
manipulation. In our setup, to train an intelligent heterogeneous
robot, a few asymmetric adversarial agents are also placed in
the training process as opponents. We hypothesize that there
are two advantages of applying this mechanism in training our
heterogeneous systems. The first is that as the runner robots
are learning to avoid the catcher robots, the catcher robots are
able to gradually develop new techniques to counter the runner
robots. This makes sure that the catching robots could develop
more and more intelligent strategies over time. Second, since
the team of catcher robots only gets rewards when they are
close enough to runner robots, our problem is a sparse reward
problem. Assigning a sparse reward is intuitive for humans but
it also requires more exploration during training. In general,
setting up opponents increases the exploration of our catcher
robots, which further accelerates learning. Curriculum learning
was first proposed by Elman [68] as a psychological concept,
and it was then argued by Bengio that it could be used in the
DRL systems [69]. For complicated tasks, it would be easier
for the algorithms to learn intended outcomes by following
an “easy-to-hard” procedure. We use curriculum learning from
two perspectives. On one hand, we use curriculum learning to
gradually ensure the performance of the whole catching team.
On the other hand, compared with the noncurriculum case, we
try to reduce the overall training complexity, making sure that
we are able to get better results with fewer overall training steps.

III. INTERACTION MODELING

In this section, we introduce the basic concepts used in our
methods starting from problem formulation to robot modeling.
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TABLE II
CONFIGURATIONS OF DIFFERENT ROBOTS IN SIMULATED AND REAL

EXPERIMENTS

A. Problem Description

We consider general searching and catching problems through
the cooperation of heterogeneous robot teams in real-world
scenarios. Specifically, we consider a setup of having a group of
observer robots, a group of communication robots, and a group
of catcher robots. These robots need to cooperate in searching
and catching several intelligent moving targets (named runner
robots) in a dynamic environment. Due to the heterogeneity,
different groups of robots need to take roles that match their
functionalities. The system also needs to adapt to real-world
conditions (e.g., higher communication and computation capa-
bilities). To further describe different robots, the characteristics
are listed as follows.

1) Catcher Robots: A group of robots that are employed to
take the primary responsibility of catching the intelligent
moving targets. The robots can see a limited range of their
surroundings. Compared with a runner robot, the catcher
robot is a bit slower.

2) Observer robots: Observer robots are fast-moving flying
vehicles. Unlike ground robots, observer robots cannot
check the tracked target directly but are able to see a much
larger range. To support the catching behavior, they are
assigned to catch the team of runner robots in the air and
report their locations to the team of catcher robots.

3) Communication Robots The communication robots are
slower but more stable vehicles. They are able to equip
larger and heavier computing and communication devices.
However, as supporting units, they are not able to catch
moving targets. The communication robots collect the
poses of all robots and act jointly as a distribution center,
sharing some of the information with other robots. This is
ensured by making sure their distances to other robots in
the catching team stay in a certain range (e.g., 45 m).

4) Runner Robots: The team of runner robots is modeled as an
opponent team to train the whole catching team through
asymmetric self-play. Compared with the catcher robot,
the runner robot is a bit faster. This makes sure that the
team of catcher robots needs to cooperate intelligently to
catch the runner robot.

The configurations of simulation and real-world experiments
are a bit different. Table II summarizes the characteristics of each
robot in different experiments. Different robots are modeled in
Unity simulation and tracked by a motion capture system in

the indoor real-world environment and by an ultra-wideband
localization system in the outdoor real-world environment.

B. Preliminaries

Before introducing our method, we first describe the basic
mathematical modeling of RL.

1) Markov Decision Process (MDP): In RL, we model a
single agent’s interaction with the environment as an MDP
tuple, (S,A, P,R, γ). S represents the state space, and A
represents the action space. P : S ×A× S → [0, 1] denotes
the transition probabilities. R : S ×A → r is a reward func-
tion, and γ ∈ [0, 1] is a discount factor. Given an environment,
where μ is the distribution of the initial state, the agent tries
through trial and error. The agent tries to find a policy π :
S → A that maximizes the expected discounted reward with
the maximized policy defined asπ∗ = argmaxπ Eπ

s0∼μ[V
π(s)],

where V π(s) = Eπ[
∑∞

t=0 γ
trt|s = s0]. The MDP is defined

generally for a single agent and to include the considera-
tion of the multiagent, we need to extend the definition of
MDP.

2) Decentralized Partially Observable MDP (Dec-
POMDP): To analyze our environmental settings, we model
our system as a fully cooperative multiagent task in terms
of a Dec-POMDP [70] defined by an extended MDP tuple
M = (N ,S,A, P,Ω,O, r, γ), where N ≡ {1, 2, . . . , N} is
a finite set of agents and S is a finite set of global states.
At each time step, every agent i ∈ N chooses an action
ai ∈ A on a state si ∈ S , which results in a collective
action a ≡ {a1, a2, . . . , an} ∈ An. Our system operates in
a partially observable environment, in which each agent
i receives a partially observable oi ∈ Ω following the
observation probability function O(oi|s, ai), resulting in
an action-observation history τi ∈ T with corresponding
constructed individual policy π(a|τi) to jointly maximize team
performance. The formal objective is to find a joint policy
π = {π1, π2, . . . , πn} that maximizes a joint value function
V π(s) = E[

∑∞
t=0 γ

trt|s0 = s, π].

C. Agent Modeling

In our HMRS, two essential characteristics need to be thor-
oughly considered. The first is heterogeneity, which means that
we need to specify the input–output problem of the control chain
due to different robot configurations. An ideal heterogeneous
system controlled by a learning algorithm should ignore some
differences in configuration, and thus, have a similar form of
input and output. Also, for the whole system to be trained in
a limited time, the multirobot system must also utilize the data
generated by each homogeneous robot in each group. When
considering the heterogeneous setup and the multirobot system
together, we also have to consider an implementable way to
establish a mechanism for cooperation between multirobot sys-
tems of each configuration. Moreover, we note here that our
setup is based on the assumption that each robot knows its global
position through GPS or other localization systems. Fig. 4. To
have a more rigorous description, we will define our problem
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Fig. 2. Illustration of the communication mechanisms between different
groups of robots in two scenarios. (a) The left side shows the situation where
only one communication robot is utilized for communication, and the right side
shows the situation in which a team of two communication robots needs to collect
the poses of all robots and act jointly as a distribution center. In our setup, the
wheeled robots team needs to take care of the communication functionality.
Consequently, the communication robots need to try to optimize their poses
over the whole catching scenario. (b) A communication diagram showing paths
of information transmitted among the team of robots.

Fig. 3. Illustration of each kind of robot in the catching team and their
corresponding primary type of perception in both simulation and the real world.
The communication robot receives a small grid-sensor observation and a vector
observation (e.g., locations and velocities). The catcher robots and observer
robots receive, respectively, a smaller and larger grid-sensor as inputs. If the
observer robots are present in the catching team, they send the location of the
runner robots to the catcher robots.

mathematically as an optimization problem in the following
section.

1) Mathematical Problem Definition: We consider a collab-
orative task involving three teams of heterogeneous robots,
noted as H̃ ≡ {T̃ , Q̃, W̃}, where {T̃ , Q̃, W̃} are respective sets
containing catcher robots, observer robots, and communication
robots. They are defined as T̃ ≡ {T1, . . . , Tnt

, . . . , TNt
}, Q̃ ≡

{Q1, . . . ,Qnq
, . . . ,QNq

}, W̃ ≡ {W1, . . . ,Wnw
, . . . ,WNw

},
whereNt, Nq, Nw are total numbers of robots in each respective
team. For each team defined in H̃, there exists an extended MDP

named MT̃ , MQ̃, and MW̃ (see Section III-B2) with the state of
each robot at time t defined as T t

nt
, Qt

nq
, and Wt

nw
. For simplic-

ity, we define a set containing states of each team of robots at
arbitrary time t as T̃ t = {T t

1 , . . . , T t
nt
, . . . , T t

Nt
}, Q̃t, W̃t. The

algorithms applied to each team should ensure that, given reward
functions, the teams of heterogeneous robots will converge
to a cooperative strategy. To stimulate the intelligence of the
heterogeneous robots, we also define a team of opponents as
Ũ ≡ {R1, . . . ,Rnw

, . . . ,RNr
}, where Nr represents the num-

ber of the runner robots. The overall goal of our system is to
make sure that the catcher robots team stays in close range
with the runner robots team subject to some constraints, e.g.,
communicating with each other. Formally, we define it as an
optimization problem

arg minθ fπθ

(
T̃ , Q̃, W̃ , Ũ

)
s.t. gπθ

(
T̃ , Q̃, W̃

)
≤ C1

g∗πθ

(
Ini

, W̃
)
≤ C2∀Ini

∈
(
T̃ ∪ Q̃

)
kπθ

(
Q̃, Ũ

)
≤ C3

cπθ

(
T̃ , Q̃, W̃

)
= 0

(1)

where fπθ
(·) is defined as

fπθ

(
T̃ , Q̃, W̃ , Ũ

)
=

∫
f̂πθ

(
T̃ t, Q̃t, W̃t, Ũ t

)
dt (2)

=

∫ ∑
Rt

nr∈Ũt

min
T t
nt

∈T̃ t

(
dist

(
Rt

nr
, T t

nt

))
dt.

(3)

We aim to reduce the distances between the catcher robots
and the runner robots. dist(·, ·) is a function that calculates the
Euclidean distance between two robots Rt

nr
and T t

nt
at time

t. In the MDP setup, the function can then be discretized as∑T
t=0

∑
Rt

nr∈Ũt minT t
nt

∈T̃ t(dist(Rt
nr
T t
nt
)). Similarly, function

gπθ
(·) is defined as

gπθ

(
T̃ , Q̃, W̃

)
=

∫ ∑
It
ni

∈(T̃ t∪Q̃t)

min
Wt

nw∈W̃t
dist

(
It
ni
,Wt

nw

)
dt

(4)

=

T∑
t=0

∑
It
ni

∈(T̃ t∪Q̃t)

min
Wt

nw∈W̃t
dist

(
It
ni
,Wt

nw

)
(5)

indicating that the communication robot team needs to reduce
the distance between the communication robot team and other
catching robots down to an arbitrary threshold C1. This is be-
cause the communication robots need to keep the communica-
tion distance short for the whole team (see Fig. 2). After a careful
and thorough literature investigation regarding the modeling of
moving base stations for multirobot communication, we think
an additional reward should be considered to satisfy the com-
munication constraints individually. Previous work has shown
that in the current wireless communication, the constraints of the
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Fig. 4. Illustration of our real-world system and the training framework we used. In the top left, we can see the scenario setup for the whole experiment, while
the bottom left shows the strategies for each corresponding team. The middle part shows the input and output structures of each policy network. The right side
shows the relationship between the policy network and the credit assignment of the reward function.

mobile base station need to maximize the coverage area based on
the minimum transmitted power [71]. Among all proposals [71],
[72], [73], we decided to maintain a communication radius as
mentioned in [73], which is widely accepted by the mobile com-
munication community and experiment with it together with the
distance reward. The communication range for communication
robots is specified as g∗πθ

(Ini
, W̃) in Formula 1 and should be

smaller than an arbitrary threshold C2 (e.g., 45 m). Function
kπθ

(·), defined as

kπθ
(Q̃, Ũ) =

∫ ∑
Rt

nr∈Ũt

min
Qt

nq∈Q̃t

(
dist

(
Rt

nr
,Qt

nq

))
dt (6)

=

T∑
t=0

∑
Rt

nr∈Ũt

min
Qt

nq∈Q̃t

(
dist

(
Rt

nr
,Qt

nq

))
(7)

regularizes the observer robots team so that it can stay above the
runner robots and provide the locations of the runner robots to
the team of catcher robots. C3 is also an arbitrary real number.
Lastly, the whole system needs to avoid obstacles and each other
in the system. In this case, the cπθ

(T̃ , Q̃, W̃) is defined as

cπθ
(T̃ , Q̃, W̃) = −

∫ ∑
It∈K̃t,J t∈K̃t,It �=J t

ĉ
(
It,J t

)
dt (8)

= −
T∑

t=0

∑
It∈K̃t,J t∈K̃t,It �=J t

ĉ
(
It,J t

)
(9)

where K̃t = T̃ t ∪ Q̃t ∪ W̃t and ĉ(·, ·) is defined as a piecewise
function

ĉ(I,J ) =

{
1, dist(I,J ) ≤ ε

0, dist(I,J ) > ε
(10)

where ε is an arbitrarily small number indicating a safe distance
between robots.

2) Semiunified Observational Model: As stated previously,
an extended MDP is defined as M = (N ,S,A, P,Ω,O, r, γ).
In the following text, we will specify the observation O and
action A of each kind of agent. We aim to have observational
models of the same structure. In this way, we are able to use
similar algorithmic structures to process the input from all
kinds of robots. Fig. 3 shows the simplified representations for
each kind of robot. The representation can be described as a
Ngrid ×Ngrid × C tensor, where N is the input length and C
is the number of all categories. This is inspired by the grid-like
sensors proposed by [74] and [75]. This makes sure that it is both
learnable and implementable using signals from the real world.
Fig. 3 shows the segmented perception of three different kinds of
robots. Among them, to simulate the real situation, the observer
robots use a large tensor(Ngrid = 100) as their input signal.
The catcher robots receive a mid-size tensor(Ngrid = 40). The
communication robots have a small observation (Ngrid = 10)
and receive the locations of other robots in the catching team
through communication.

3) Decision-Making Level Output: While training and ex-
ecuting, all MA-POCA algorithms generate a set of experi-
ences. Depending on the robot types, different groups may
have different action spaces. For the team of catcher robots
and communication robots, we define the action space as a
2-D continuous vector space consisting of linear and angular
velocities (e.g., differential drive kinematics). Given the max
linear velocity vxmax and max angular velocity ωx

max of a robot
x ∈ T̃ ∪ W̃ , the sampled action axt ∈ {−1, 1} is scaled by mul-
tiplying vxmax orωx

max to give the desired velocity commands. The
team of quadcopter robots has omnidirectional drive kinematics,
meaning that the sampled actions have a 3-D continuous vector
action space. In adddition, we also collect trajectories of different
robots during the real-world experiment. If a robot diverges too
much from the desired location due to turbulence, it changes
to a pure pursuit strategy and follows a trajectory generated by
the algorithm. Trajectories contain a list of tuples defined as
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(xt, yt, zt, θt) = It∀It ∈ K̃t, where x, y, and z represent the
global locations of the robot and θ indicates the current pose of
the robot. When high-level decisions are made, a PID controller
ensures the robot will go to the given position (x, y, z) with a
heading direction θ.

4) Communication Between Different Multirobot Teams: To
ensure cooperation between groups of heterogeneous robots for
this task while considering the differences between simulation
and the real world, we will have to design and regulate the overall
communication process. Theoretically, a team of catcher robots
should have the capabilities to support massive connectivity
and can deliver fast and low-latency communications. However,
many systems have the limitation that they lack the ability to
generate a strong enough signal for each device. One solution to
this problem is to use communication robots as a dynamic com-
munication center by taking advantage of the fact that they can
carry heavier equipment and can have more power. Fig. 2 shows
the two different communication schemes of the heterogeneous
robot teams in HMRS. To implement a flexible communication
mechanism, in the following section, we will describe how we
use reward functions to encourage the communication behavior.

5) Reward for Heterogeneous Robot Teams: RL algorithms
use reward functions as indicators to optimize their policies.
When a single-agent algorithm is used, the rewards are given
to the individual robots. When the algorithm MA-POCA is
used, the rewards are given to different teams of heterogeneous
robots. In this section, we introduce how rewards are defined for
each team of robots. For the team of catcher robots, the reward
function could be decomposed into two parts. The first part is
the common part for collision avoidance, allowing them to stay
away from each other and obstacles. The reward for obstacle
avoidance is defined as

RX̃
ca = −

T∑
t=0

∑
It∈X̃ t,J t∈{K̃t∪Õt}

It �=J t

ĉ
(
It,J t

)
(11)

where X̃ t indicates the set of robots that would like to stay
away from each other and obstacles, Õt is a set containing all
obstacles.

The second part includes a positive reward signal when any
catcher robot approaches a runner robot, indicating the general
purpose of the catcher robot team. When a catcher robot is able
to stay in a close range with a runner robot, it receives a sparse
reward rt at time t, with the final reward defined as

Rt =

T∑
t=0

∑
It∈K̃t

J t∈Ũt

ĉ
(
It,J t

)
+RT̃

ca. (12)

The team of observer robots tracks the team of runner robots
in the air and reports their locations to the team of catcher robots.
As a consequence, they will try to stay close to the runner robots’
team. The reward function of the observer robots is defined as

Rq = −
T∑

t=0

∑
Rt

nr∈Ũt

min
T t
nt

∈T̃ t

(
dist

(
Rt

nr
,Qt

nt

))
+RQ̃t

ca . (13)

Fig. 5. Estimated Rx bandwidth around the communication robot. From
data collected in polar space, we use a radial basis function with a Gaussian
kernel to estimate the Rx speed. The red circle shows our assumed range of
communication.

Practically, for faster convergence, when the number of runner
and observer robots is equal, we only calculate the minimization
operation once. In this case, the reward for each observer robot is
always its negative distance from the closest runner robot, when
the scene is initialized, meaning that the association between an
observer robot and a runner robot is decided at the beginning of
the scenario. The main function of the communication robots is
to keep the distances to the other robots in the catching team short
and stay in the communication range as long as possible. Fig. 5.
To make sure of that, the reward function for the communication
robot is defined as

Rw = −
T∑

t=0

∑
It∈(T̃ t∪Q̃t)

(
Rmin

w − ωwH
(
Rmin

w − C2
))

+RW̃t

ca

(14)

where Rmin
w = minWt

nw∈W̃t dist(It,Wt
nw

), H(·) is the Heavi-
side step function to indicate possible catastrophic results if other
robots run out of the communication distances, and ωw is the
weight assigned to the step reward function (e.g., 0-0.1). Among
the three different reward functions,Rc is sparse andRw andRp

are nonsparse rewards. For the whole system, the final reward
is the addition of all of them LR = Rt +Rw +Rc. After the
reward is assigned to each robot team, the reward is assigned to
each robot using the MA-POCA algorithm. During the training,
LR is not easy to optimize while having all the robots running
either cooperatively (i.e., catcher robots, observer robots, and
communication robots) or competitively (i.e., runner robots).
Here we follow a curriculum strategy to train LR. In the first
stage of training in the simulation, catcher robots are assumed
to be able to communicate with each other. They are also given
the global locations of runner robots, using the standard domain
randomization technique [76]. In the second stage, the observer
robots are trained to follow the runner robots in the air. Once the
observer robots see the runner robots, they can send the runner
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Fig. 6. Development of our method through systematic experiments. As
indicated by arrows, we start by testing MA-POCA’s performance for a team
of catcher robots. Following that, we add two runner robots for asymmetric
self-play to stimulate the intelligence of the catcher robots team. Then we
continue with adding a curriculum to avoid more and more obstacles in this
process. From left to right, the same process is also repeated for observer
robots and communication robots. Green, red, and blue colors represent the
first, second, and third stages of development.

robots’ global locations to the catcher robots. In the third stage,
the team of communication robots is trained to take care of signal
coverage problems. Three steps of the curriculum are described
in Fig. 6, and they are needed to stabilize the overall training
performance.

6) Design of Self-Play Mechanism and Reward for the Run-
ner Robots Team: A group of runner robots is trained as a
team to stimulate the intelligence of the heterogeneous robot
teams. For this purpose, we follow the definition in paper [63],
designing a self-play module or training scheme by using the
notions of the menagerie πo, where all played policies are
kept in, with the policy sampling distribution Ω, and the gating
function G, specified by the tuple < Ω(·|·, ·), G(·|·, ·) >. The
gating function must decide which policy is kept and which
policy is discarded. More specifically, Ω is a policy sampling
distribution over the menagerieπk and current policy πt

k. As the
purpose of our self-play scheme is to stimulate the other group,
we need to 1) train the runner robots team to have some level of
intelligence 2) but also give enough time for the heterogeneous
robot team to train to win over the runner robots team. We
employ a time-constraint asymmetric self-play strategy [63], in
which we maintain two menageries πk and πr , which represent
collected policies from the catcher robots group and the runner
robots group, respectively. The sampling function associated
with sampling distribution Ω of the catcher robots group is
specified as

φΩk
(πr|πk, π

t
k) =

{
πt+1
r ∀{t+ 1} ≤ T

πT
r ∀{t+ 1} > T

(15)

meaning that both groups use the newest policies to play with
each other up until a moment T . After that moment T , the runner
robots team will always use the same policy πT

r , giving more
time to the catcher robots team to learn. Meanwhile, the sampling
function associated with sampling distribution Ω of the runner

robots group is specified as

φΩk

(
πt|πr, π

t
r

)
= πt+1

k ∀{t+ 1} (16)

which indicates that the runner robots team will always choose
the newest catcher robots policy as the opponent. Before time T ,
to stimulate the runner robots team to run intelligently, a reward
Rr is given to the runner robots team, which is opposite to the
reward given to the catcher robots team

Rr = −
T∑

t=0

∑
It∈Ũt,J t∈T̃ t

ĉ
(
It,J t

)
. (17)

This design makes sure that the catcher robots team and the
runner robots team will compete against each other, iteratively
increasing both teams’ intelligence until time T .

IV. EXPERIMENTS AND RESULTS

To show our method’s performance in simulation and real-
world heterogeneous multirobot scenarios, we gradually demon-
strate our development through different experiments. In the fol-
lowing text, we first demonstrate the performance of our system
in simulation. We show the comparison between two conditions,
namely, with curriculum learning and without curriculum learn-
ing. We also demonstrate intelligence elicited by the asymmetric
self-play method through a few examples. Moreover, we conduct
a few ablation studies to see which observational formation is
better for our system and compare the performances of single-
robot and multi-robot teams to show the power of cooperative
intelligence. Finally, we show how we implemented our system
in the real world and demonstrate with experiments that our
system can achieve predefined requirements. In the real-world
experiment, we define the criteria for successful catching be-
havior and compare the success rate in the simulated and the
real-world conditions. In addition, we also compare the obstacle
avoidance abilities in both simulation and real-world conditions.

A. Our Setup

Two different kinds of setups are utilized in this study, namely,
a simulated setup and a real-world setup. The simulated setup
serves as a theoretical investigation before real-world experi-
ments.

1) Simulated Setup: To demonstrate our method capabilities
in the real world, we first conduct experiments in simulated
environments through curriculum-based staged developments,
showing that our methods are able to learn a catching strategy
by intelligently utilizing the self-play mechanism and different
functionalities of the teams of the heterogeneous robots. The
simulated environments are reasonable abstractions of real-
world scenarios on three levels. On the first level, the opponent
runner robots are trained with multiagent RL algorithms, giving
them some level of intelligence. This will then further stimulate
the catcher robots to develop more intelligent strategies. Si-
multaneously, the environment consists of randomly generated
obstacles, reducing the gap between simulated and real envi-
ronments. Lastly, different heterogeneous robot teams’ abilities
are modeled fully according to their real-world functionalities,
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Fig. 7. Examples of different cases of entering the equilibrium in both simula-
tion and real world. In this figure, purple blocks represent runner robots and the
blue robots represent the catcher robots. (b)–(d) represent three different cases
of equilibrium in simulation. (a) Equilibrium in the real world.

ensuring that the modeling gap is minimized in our study. More
specifically, we construct our scenarios in Unity ML-Agent [75],
which is a general platform for intelligent agents. Different
developmental stages of simulated experiments are defined in
Fig. 6, which illustrates the stage-by-stage development of our
baseline system. From left to right, we gradually developed
the team’s cooperative strategy of catcher robots, observer
robots, and communication robots, respectively. For each team
of robots, we also have a two-step or three-step team building
schedule. In this schedule, we first test the performance of
the robot teams for generating cooperative behavior. Then we
continue with introducing the runner robots as a mechanism
of asymmetric self-play. Finally, we also designed a learning
curriculum for different robots. The goal of the catcher robots is
to chase and stay close to the runner robots; the goal of observer
robots is to keep the runner robots in their observations so that
they can send the locations to the catcher robots. The purpose
of the communication robots team is to keep distances to other
robots short in the catching team and stay in the communication
range as long as possible. Fig. 7 shows an example of our
basic setup of a team of catcher robots interacting with two
runner robots. In this figure, red blocks represent the randomly
initialized obstacles, blue blocks represent the catcher robots
team, and purple robots represent the runner robots.

2) Indoor Real-World Setup: The real-world indoor experi-
ment was carried out in a laboratory, in which we established a
testing area similar to our simulated environment but with two
major modifications. The first major modification is the size of
the area. Due to the real-world limitation, we reduced the area’s
size in accordance with the experimental conditions. The second
modification is the obstacle. In the simulated experiment, we
have 20 randomly generated obstacles, and in the real world, we
have two randomly generated obstacles due to the size limit of
the area. In this environment (see Fig. 7), we used three different
robots to represent three teams of heterogeneous robots. For
the team of catcher robots, we used three SPARKs.2 In this

2[Online]. Available: https://github.com/NXROBO/spark

Fig. 8. Different components in the indoor real-world experiment. Except for
the protective equipment, there are three catcher robots, one moving obstacle,
two static obstacles, two runner robots, two observer robots, and a communi-
cation robot in the scenario. The names of robots are marked with white labels
around them. In heterogeneous robotic systems, the rational allocation of work
according to the different tasks is an important part of ensuring the completion
of tasks.

scenario, they are assigned to collaboratively find and catch a
team of two runner robots while avoiding obstacles and each
other. The SPARK we adopted is a differentially driven mobile
robot, which is currently widely used for research and education
purposes. The observer robot we used is the tello robot provided
by DJI3 and the communication robot we used is MR500 from
Robot++.4 We used Pepper robot5 and a green spark robot as
the runner robots. A Leikago6 robot is also adopted as a moving
obstacle for testing purposes. Fig. 8 shows all the experiment
equipment. Except for the robots, the other setups are described
as follows.

1) Computer Setup: We used an edge-computing device for
the control of our robots, which is essentially a computer
server. The computer (Intel Core i9-10900 K CPU @
3.70 GHz, 32 G RAM) consists of 20 cores and is installed
with Linux Ubuntu 18.04 LTS and robot operating system
(ROS).

2) Environment Setup: In the indoor real-world experiments,
we construct two task scenarios in the laboratory, which re-
semble the simulated scenarios to reduce the gap between
simulation and the real world, improving the deployment
accuracy of the trained model in the real-world robots.
In Fig. 8, the antiglare floor represents restricted areas.
In addition, protective nets are placed around the area to
prevent observer robots from flying out accidentally. The
whole scene maps to 6× 6 square metres.

3) Communication Setup: The communication in our in-
door scenario is ensured by a high-speed, low-latency
Wi-Fi router. The trained model, receiver, and emitter
replay buffer are connected to the robots’ local network

3[Online]. Available: https://store.dji.com/shop/tello-series?set_region=
US&from=store-nav

4[Online]. Available: https://www.linkedin.com/company/robotplusplus/
5[Online]. Available: https://www.softbankrobotics.com/emea/en/pepper
6[Online]. Available: http://www.unitree.cc/e/action/ShowInfo.php?classid=

6&id=1

https://github.com/NXROBO/spark
https://store.dji.com/shop/tello-series{?}set_region=US&from=store-nav
https://store.dji.com/shop/tello-series{?}set_region=US&from=store-nav
https://www.linkedin.com/company/robotplusplus/
https://www.softbankrobotics.com/emea/en/pepper
http://www.unitree.cc/e/action/ShowInfo.php{?}classid=6&id=1
http://www.unitree.cc/e/action/ShowInfo.php{?}classid=6&id=1
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Fig. 9. Outdoor real-world demonstration setup. (a) Whole demo area inside
the Chinese University of Hong Kong, Shenzhen. (b) Simulation built using a
3-D map of the University. (c) Type of robots used in the experiments.

by utilizing ROS. To ensure consistency between robots,
commands are sent in 20 ms and executed in 100 ms.

3) Outdoor Real-World Setup: The real-world demonstra-
tion was carried out at the Chinese University of Hong Kong,
Shenzhen. To this end, we first make a simulated area similar
to the University environment. We demonstrate the outdoor
catching scenario to show that our method is robust enough
to deal with outdoor turbulences with current technological
conditions, such as localization inaccuracy, control limitations,
etc. Compared with the indoor experiment, we chose a much
larger area (60 × 60 m) to test our method’s integration with the
outdoor environment. We use the same method for intrateam
and cross team cooperation. However, to adapt to the outdoor
scale, we followed prior work [77] and built open-source MIT
Mini-cheetah quadruped robots as the catching robots, which are
relatively faster compared with Spark robots and more suitable
on bumping terrains. Moreover, we use an Amov quadcopter to
counter wind turbulences and we also installed a longer antenna
for stabler communication performance. Fig. 9 shows our robots
used in the outdoor environment . The robot is trained using
a 3-D campus map of the Chinese University of Hong Kong,
Shenzhen, which provides information on obstacles in a 3-D
environment. MR500 and Amov R3007 are unmanned electronic
vehicles capable of traveling on bumpy terrains for a long time.
Three different MIT cheetah robots are used, with two as catcher
robots and one as runner robot.

B. Metrics for the Evaluation

We use two main metrics for our later experiments. The first
is the total reward generated by the HMRS. In the follow-
ing sections, the total reward is described by the addition of
(12)–(14) and is used to evaluate the performance of different
configurations. The other metric is the definition of successful

7[Online]. Available: https://amovrobotlab.com/

catching behavior, which is different in simulated and real-world
experiments. In the simulation, we test whether each step is
successful, and we utilize (12) to count whether the catcher
robots are close enough to the runner robots’ overall running
steps, with a team of the same opponents. For real-world ex-
periments, we focus on whether each episode is successful.
Therefore it is required that each step is successful for some N
consecutive times before the episode is considered successful.
After the algorithms have converged, the catcher robots and
the runner robots can enter an equilibrium in which either
catcher robots or obstacles surround the runner robots. More
precisely, after entering the equilibrium for 20 steps (around
2 s), we count the scenario as successful in the real world.
Mathematically, the success of the catcher robots is ensured by
two conditions. 1) All runner robots must move no more than an
arbitrary distance L1 in 2 s, ∀Rt ∈ R̃t,Rt −Rt−20 ≤ L1. 2)
For all catcher robots, they need to surround at least one runner
robot. ∀Qt ∈ Q̃t, ∃Rt ∈ Ũ t, dist(R,Q) ≤ L2, where L2 is an
arbitrary distance. In our real experiment, L1 and L2 are set as
0.3 and 0.5 m.

C. Simulated Experiments

1) Experiments on Different Mechanisms: As previously
stated in the method section, we build our baseline system
through systematic experiments combining different mecha-
nisms of DRL. More specifically, self-play and curriculum learn-
ing are the main mechanisms employed in our development.
As shown in Fig. 6, we first tested the performance of nonco-
operative and cooperative behavior by using single-agent and
multiagent setups (i.e., POCA-same-beha/POCA-diff-beha) on
a team of catcher robots. After this, we added two runner robots
as the team of opponents for asymmetric self-play to stimulate
the intelligence of the quadruped robot team. Lastly, we continue
with different stages of training observer robots and commu-
nication robots, respectively. Crossing the different stages, the
whole structure of the learning process could be understood as a
curriculum enabling different teams of heterogeneous robots to
act cooperatively to achieve the common goal specified by LR.

a) General Learning Performance: We train our system
based on the curriculum learning principle and design three
stages in our learning process. In the first stage, we train the
catcher robots team together with the runner robots team. While
keeping the observer robots team and the communication robots
team away, we also introduce fewer nonstationary elements in
our heterogenous system, which helps to reduce the variances
of the rewards received during the interaction [78]. After that,
we then bring the observer robots team and the communication
robots team, respectively, into our system to include the rele-
vance of heterogeneity. The result shows that our system is able
to converge to a stable strategy after three stages of learning
while keeping some level of intelligence. Fig. 10 shows the
learning curves of different stages, namely, the green, blue, and
orange curves. Compared with the strategy without curriculum
strategy, our method has a relatively higher total reward and less
variance. However, we need to note that higher reward does not
always lead to better performance when the system is highly

https://amovrobotlab.com/
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Fig. 10. Illustration of the learning curves of our system. Two groups of curves
are compared in this figure. One group, which consists of pink, yellow, and
green curves, is trained without the curriculum strategy. The other group, which
consists of green, blue, and red curves, is trained with the curriculum strategy.
A total reward difference can be found between the two groups.

dynamic. This is due to that a chaotic learning process affects
the team of runner robots as well. If the runner robots are not
able to run intelligently, they are more likely to be caught by
the catcher robots, resulting to have a higher reward for the
catcher robots alone. To have a fair comparison between these
two groups, we conduct a study using the policies learned from
both groups. We compare the catcher robot policies against
the policy of the runner robots learned in the noncurriculum
group using the metrics mentioned in Section IV-B. For total
of 200 runs, we received on average (M = 261.21) steps for
the group that uses the curriculum strategy vs (M = 257.1)
steps for the group that does not use the curriculum strategy.
To further illustrate the interaction between the runner robots
team and our heterogeneous catching system more clearly, we
sample a few interactions from two different groups and evaluate
the behavior. Fig. 11 illustrates three sampled behaviors of the
curriculum-based strategy. It shows that our system is able to
catch the runner robots after using different strategies. The
details of Fig. 11 will be explained in Section IV-A.c.

b) Single-agent Verus Multiagent: We aim to make our
teams of heterogeneous robots act cooperatively to catch the
runner robots. To make sure of that, we experimented with
two sets of configurations. One of the configurations is named
same behavior POCA (same-beha-POCA), which means that
each team of the same type of robots shares a same policy,
allowing the multiagent algorithm to redistribute the reward to
each robot. The other configuration is named different behavior
POCA (diff-beha-POCA), which means each agent acts as a
single-agent team and gets all the rewards. Except for the above-
mentioned difference, the other configurations remain the same.
We hypothesize that the former algorithm could provide a better
performance in our catching scenarios due to cooperative behav-
iors. Fig. 12 illustrates the differences between the two groups.
On the left side, both policy networks are trained with3.16× 107

steps, while on the right side, the diff-beha-POCA group has
run 3× 3.16× 107 steps. This is because the single-agent (diff-
beha-POCA) policy needs to observe three times more data to
be comparable with the multiagent (same-beha-POCA) policy,
as the multiagent policy gets data from three catcher robots
simultaneously. After balancing the total amount of data, we
can observe that when each catcher robot acts individually,

Fig. 11. Illustration of three different scenarios emerged from learned strategy.
In these time-lapse figures, the yellow points represent the catcher robots team,
and the blue points represent the runner robots team. The red circles are obstacles
that both runner robots and catcher robots need to avoid during the overall
process. The endpoints of the important trajectories are marked with bright
circles. From (a) to (c), each figure represents a scenario where robots need to
make intelligent decisions.

Fig. 12. Comparison of single-robot noncooperative and multirobot coopera-
tive cases. The green line shows the multirobot cooperative case, in which each
type of robots are assigned to a team. The orange and purple lines represent the
cases in which each robot is a single-robot team. Among these two lines, the
orange line shows the situation when the single-robot learns all by itself. Whilst,
the purple line shows the situation when the single-robot gets three times more
data. This is due to that in the multirobot case, the POCA algorithm gets data
from three catcher robots.

the catcher robots team receives a significantly less amount of
reward than when they act cooperatively.

c) Asymmetric Self-Play: For each level of abstraction
mentioned in Section IV-A, we repeated the experiments and
compared their performance against runner robots by simulta-
neously training asymmetric self-play agents. This asymmetric
self-play agent is utilized to stimulate the intelligence of the
heterogeneous system. To ensure the learning performance of
the catcher robots, each self-play agent is trained with 9× 105

steps, and each catcher robot is trained with approximately
1.054× 107 steps. This mechanism makes sure that the runner
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Fig. 13. Comparison of two different observations. The pink line indicates
the situation where the team of catcher robots uses grid sensors as observations.
The green line indicates the situation in which the team of catcher robots uses
grid sensors together with the location of the runner robots as observations. We
can see that when the location information is given to the catcher robot team,
they are able to get more rewards in the environment, indicating that the catcher
robots can suspend the runner robots more.

can learn a decent strategy of avoiding the catcher robot team
in the first 9× 105 steps. After training the team of catcher
robots, we noticed a few interesting patterns emerge during
the process. As previously mentioned, Fig. 11 illustrates three
different cases where each robot needs to make intelligent de-
cisions based on their observations (other robots are omitted
in the figure). We need to note that each robot only has local
observations, so they cannot see other robots far away from it.
The critical trajectories’ end points are marked with yellow and
blue circles. Yellow circles are associated with catcher robots,
and blue circles indicate runner robots. In all figures, small red
dots represent obstacles that all robots need to avoid during the
process. Fig. 11(a) illustrates a situation where a catcher robot
(blue circles) observes that a runner robot is suspended by two
of the catcher robots. As a consequence, it leaves them and
searches for the other runner robot. Fig. 11(b) shows another
catching scenario, where a runner robot used two swings to run
away from the catcher robot, and the catcher robot was still
able to follow the runner robot closely. Fig. 11(c) illustrates
another scenario where two catcher robots cooperatively follow
a runner robot. These three cases indicate that some amount
of asymmetric self-play could help with the decision-making
process of heterogeneous multiagent systems.

2) Ablation Study
a) Location: We experimented with the influence of the

zero-range sensing [79], which is the location and the pose
of the moving runner robots. Each experiment was conducted
six times to determine the algorithm’s mean and variance to
evaluate the performance more accurately. The results of with
and without location information can be observed in Fig. 13.
The red area in the figure indicates turbulence caused by the
opposite learning robots. We can observe from the figure that the
location information added extra stability to the system, indicat-
ing that zero-range sensing helps with the catching scenarios.
This further suggests that if the observer robots can provide
location information to catcher robots, the overall stability could
be improved.

b) Influence of Reward Functions of Communication
Robots: As described in Section III-C5, the reward functions

Fig. 14. Evaluation of large-scale catcher robot teams. (a) Training processes
of catcher robot teams of different sizes. (b) Results of training in a large-scale
50vs20 scenario.

for communication robots has two components. One reward
function requires the team of communication robots to be close
to catcher robots and quadcopter robots, and we also added a
sparse reward to indicate that the team of communication robots
needs to make sure that other robots stay within its coverage
range. When only the first component is present, the team of
communication robots only tries to stay in the middle of the team.
When the coverage reward is added, the robots’ relative location
to other robots becomes a bit arbitrary, but they also start to care
about ensuring most of the robots stay in the range. The results
show that the second approach resulted in a 23% increase in
the time to stay within the 45 m communication range, reaching
86% of the total time in the simulated experiment.

3) Train With a Larger-Scale Catcher Robots Team: To test
our method’s learning performance with a large-scale catcher
robots team, we gradually increase the number of robots in the
catcher team and test whether our approach can still learn in
different scenarios. Our results in Fig. 14(a) show that we can
train a catcher robots team of 2 to 7 robots by utilizing the
residual attention mechanism in the MA-POCA algorithm. In
addition, to have a boundary test, we train a 50vs20 scenario,
where a team of 50 catcher robots needs to catch a team of 20
runner robots in an area nine times larger than the scenario tested
in Fig. 14(a) (i.e., 150×150). We trained the 50vs20 scenario
five times, and the results in Fig. 14(b) show that our method
can handle a large-scale catcher robot team during training.
However, we need to point out that training the 50vs20 scenario
takes around 20 GB VRAM and 72 h; consequently, we can only
train it with an Nvidia 3090 GPU with Unity ML-Agents Toolkit.
Another thing we noticed in Fig. 14(b) is that the results have
a more considerable relative variance compared with scenarios
with fewer catcher robots (see Fig. 13). This may be caused by
a large number of catcher robots or the large strategic space of
this scenario.

4) Bridging Study: In this section, we conduct a bridging
study to compare our method’s performance with a method
called S2M2 [1] in our catching scenario. To the best of our
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knowledge, there is no method dedicated to solving the intel-
ligent catching problem using heterogeneous teams of robots.
The works mentioned in Table I mostly used state-machine or
planning-based algorithms, resulting in possible limitations on
robustness. To name a few, the study conducted in [8] used
a procedure with state identification and a state-based rapidly
exploring random tree star (RRT*) algorithm. Another work [11]
used statistical adaptive methods. These methods are not general
enough to be compared. However, with some modifications, a
recent state-of-the-art algorithm developed for the reach-and-
avoid behavior of multirobot teams could be compared. The
S2M2 is an optimization and priority-based search (PBS)-based
algorithm that enables the reaching behavior of teams of robots
while being able to avoid all the obstacles and each other during
the process. The PBS family is claimed to be better in effectively
coordinating agents than the conflict-based algorithms [1], such
as conflict-based search. We compare our method with this
algorithm based on a few reasons. The main reason is that
this algorithm is claimed to be a state-of-the-art algorithm that
deals with catching-like (reach-and-avoid, as described in [1])
tasks. Also, this algorithm is a relatively new algorithm that
works in a continuous multirobot setup with obstacle avoidance
functionality and has state-of-the-art performance. We used the
python library of Gurobi 9.0.1 as the original S2M2 code8 for a
fair comparison.

A few customizations are applied to this algorithm to make it
work in our HMRS catching scenario. The first is that the goals of
the S2M2 are updated constantly because the intelligent runner
robots are always moving. The second is that our catching team is
an HMRS that consists of three teams of robots. For each team of
robots, we need to have one S2M2. That means we need to have
three S2M2 implementations for the whole catching team. Third,
the S2M2 needs to get geometric information of all objects in the
environment as input and this means that we need to assume that
all the positions of obstacles and agents are known to the whole
system. We name the method that considers the previous three
modifications as S2M2-catching. The goals are updated using
a K-nearest neighbors (KNN) algorithm with our case k = 1 in
this study, meaning that each catcher robot always aims for the
closest runner robot. Algorithm 1 summarizes the differences
between the original S2M2 and our S2M2-catching. The blue
area indicates where we assign the goals to agents, and the red
area shows how we continuously select paths for agents.

With these modifications, we compare our method with S2M2
in a smaller environment that contains fewer robots. The main
reason is that the S2M2-catching needed a lot of time to compute
in a large environment. We conducted a pilot study and found that
it takes around eight times more time to compute in a simulated
environment with more robots and obstacles, making experi-
ments in a larger environment unperformable. As a consequence,
we evaluate two algorithms in a smaller environment (see
Fig. 10) using the methodology widely employed in machine
behavior analysis [80]. In total, 2400 runs with, respectively,
100, 500, 1000, 1500, 2000, and 2500 steps are tried to compare
the performance of S2M2-catching with our learning-based

8We used the original S2M2 code from https://github.com/jkchengh/s2m2

Algorithm 1: S2M2 [1] With Our Modifications.

method in the simulated environment. We compare the total
times of successful catching behavior by utilizing the metrics of
the simulated experiments introduced in Section IV-B and count
in how many steps the catcher robots are close enough to the
runner robots. We present the results over six different running
steps, assuming that the whole environment is fully observable.
After receiving the results, we first perform a two-tailed t-test
to check whether there is a statistical difference between the
two groups in the final 2500 steps conditions. We found that
the S2M2-catching algorithm (M = 873.15, SD = 320.28)
and our learning-based method (M = 1075.19, SD = 255.38),
t(398) = 6.95, p < .001, are significantly different. In addition,
the results of both groups passed the normality test when the
step numbers are bigger than 1000. Also, to further analyze
the trend, instead of using multivariate analysis of variances
or a general linear model, we assume a Gaussian-like nonlinear
transformation to the input at each step and perform a Gaussian
process regression (GPR) via maximum likelihood estimation.
Fig. 15 shows the estimated means and variances of each group.
Demonstrating the trend, we also make predictions based on
our learned GPR model, which can be seen in the figure. The
statistics of the two algorithms are also explainable intuitively.
In the beginning, the optimization-based method can find nearly

https://github.com/jkchengh/s2m2
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Fig. 15. Fitted Gaussian process regression models of the S2M2-catching
algorithm and our method. Our method had an overall better performance. The
S2M2-catching performed better when the number of steps are low (less than
250).

optimal paths to the runner robots, and they are the first to
touch the runner robots. However, because the robots being
tracked are intelligent and can make detours or circles around
points, the optimization-based algorithms can quickly lose them.
Instead, as our methods are better at intelligent strategies, such
as encirclement or containment, they perform better in longer
runs.

D. Real-World Indoor Experiments

With the results presented, we need to emphasize that the
S2M2 deals with general continuous multirobot reach-and-avoid
scenarios, and our results do not mean that it does not perform
well in other tasks (see. [1]). Nevertheless, based on these results,
we also point out a few advantages of our method in solving
the intelligent catching problem, 1) the self-play and the DRL-
based methods enable the agents to consider long-term strategy,
making the catching more effective in the long term. 2) The
assumption of always getting the position of all the obstacles
in the system is strong. Instead, the representation used in our
method, (e.g., grid sensors) can be easily transformed from other
more realistic sensors (i.e., camera and Lidar).

The real-world experiments are conducted to show that our
framework could be used in a scenario where different real
robots can collaborate intelligently to complete a catching task.
Concretely, this demonstration is divided into two experiments,
mapping to two different hypotheses. The first hypothesis is that
the control of the system can be used in reality as a whole.
This is one of the most important hypotheses. An additional
hypothesis is that randomly generated obstacles will increase
the robustness needs of the system. We measure the degree of
completion by setting the completion of the task in the simulation
to be 100% and compare the completion rate of the system in the
real world. For the second hypothesis, we measure it by setting
up a moving obstacle in the real environment. We measure both
the collision rate with the uniformly moving obstacles in the
simulation, and the collision rate of the moving obstacles in
reality under the assumption that moving obstacles have the

Fig. 16. Illustration of the learning curves of the trained model in a real-world
experiment. The total reward increases over three stages of learning.

same movement speed as the robot. To make sure that our model
could be used in reality, we first train a model in simulation.
In this simulation, the characteristics of each robot are the
same as the properties of the real-world robot, meaning that
the trained model is similar to reality. Fig. 16 shows the learning
of simulation in the real-world experiment. One property we can
observe is that the trend of the learning curve is similar to the
learning curve of the previous simulated experiments (as can be
observed by comparing Figs. 16 and 10).

1) Success Rate and Number of Collisions: To quantify the
system’s performance, we utilize the definition of success in
real-world experiments mentioned in Section IV-B. As previ-
ously described, we have eight robots in this system, including
three catcher robots, two observer robots, a communication
robot, and two runner robots. Three of the spark robots are set
up as catcher robots. Two robots, a Pepper robot, and a green
spark robot are utilized as runner robots. In addition, a Leikago
robot is used as a moving obstacle to test the performance of
the real-world system. We randomly initialize the scenario 18
times and measure the success rate of the real-world system
and compare it with the simulated scenarios. Fig. 18 counts the
successful cases in real experiments. Each experiment contains
two possible successful cases so in total we have 54 possible
successful cases. Theoretically, the real-world scenario should
have more failures than the simulation due to the imperfect
controllers. However, statistically speaking, the difference is not
large enough. (Two sampled Z-test of proportions indicate that
we cannot tell there is a significant difference (p = 0.18 > .05)).

a) Avoidance of moving obstacles and number of minor
collisions: The real-world experiments show that our system is
sufficiently robust against moving obstacles after training the
whole system through domain randomization. To this end, in
the real-world experiment, we used a quadruped robot Laikago
as a moving obstacle. It approaches different robots during the
interaction, testing whether catcher robots are able to avoid it.
The obstacles’ positions are reflected in the simulation in real
time. We count the number of approaches and the number of
successful avoidance during the interaction. Fig. 18 shows that
in a total of 14 approaching trials, 13 of them are avoided by
the system. For one time, this caused a minor collision. A minor
collision means that two robots have a minor impact contact,
not interrupting the whole process. In total, two minor collisions
happened in the real-world experiments.

2) Demonstration of Intelligence: To further illustrate intel-
ligence, Fig. 17 shows all the ending scenes of the 18 real-world
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Fig. 17. A collection of figures depicting the end moments of all real-world scenarios. Red circles show the final equilibrium between the catcher robots and the
runner robots. Another thing that could be observed in this figure is the location of the communication robot. It always stays relatively in the middle of the catching
team.

Fig. 18. Comparison of the simulation and real-world experiments. For the
measurement of successful cases, we conducted 18 times repeated experiments.
In total we have 18× 3 robots = 54 possible successful cases.

experiments. From this figure, we can also see that the team
of catcher robots catches both runner robots through different
means. In many cases, the catcher robots utilized the edge of the
area to block the paths of the runner robots [e.g., in Fig. 17(c)
and (k)]. However, in some cases, the obstacle is also used to
block the path of the runner robots. [e.g., in Fig. 17(h) and (n)].
This shows that the catcher robots team developed intelligent
strategies in our experiments.

3) Additional Statistical Metrics: To further quantify the
real-world experiments, we illustrate two more metrics regard-
ing the performance of the observer robots and the communica-
tion robot. The first metric is to evaluate whether the observer
robots can follow the runner robots closely. This metric is
quantified by counting whether observer robots can stay in a
3-m range of the runner robots for at least 4/5 total interaction
time. In all 18 times experiments, the behavior of the observer
robots satisfies this condition (see Fig. 18), demonstrating that
the observer robots are able to provide functionalities needed by
the system. To exemplify a few, Fig. 19 shows the paths of runner

Fig. 19. Examples of the paths generated by observer robots and the runner
robots. During the experiments, the observer robots stayed close to the runner
robots. The projected final positions of the observer robots are also close to the
final positions of the runner robots, showing that the catching behavior of the
observer robots lasted until the final moment.

robots and the observer robots. We can see that the observer
robots stayed close to the runner robots during the experiments.
The final projected points of observer robots in experiments are
also very close to the runner robots.

The training process of the communication robot can already
be observed as a function of reward, illustrated in Fig. 16.
However, as a demonstration, we would like to show several
examples that the communication robot can generate a path that
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Fig. 20. Examples of the paths generated by the whole catching team. Three
examples are shown to illustrate that the communication robot tends to keep the
distances short and can stay in the range for joint communication in the middle
of and at the end of the experiments.

tries to stay within the range for joint communication of the
catching team. Fig. 20 shows three examples of the generated
paths. For each example, we marked the projected position of
each robot in the middle of the experiment and at the end of
the experiment. Thereon, we use auxiliary lines to show the
distances between the communication robot and other robots.
Because the communication robots team follows the criteria
described in (14), it always tries to minimize the overall com-
munication distance.

E. Real-World Outdoor Experiments

As stated in the setup Section IV-A, we also conducted ex-
periments in the outdoor environment. We would like to know
whether our method, together with other common technologies,
could work well with real-world constraints. Fig. 21 illustrates
the paths of robots observed by the other robots during the
catching scenario. We can observe from the figure that even with
noises, the catcher robots are still able to surround the runner
robot. The results show that our method demonstrated robustness
during the tests.

1) Implementation Details: Fig. 22 shows the details of
the system. For the localization [see Fig. 22(a)], we use the

Fig. 21. Paths generated by different robots in the outdoor environment.
Although the robots are affected by noises and do not generate the expected
smooth paths, our system can still finish the task. * The noisy path of the
quadcopter is extracted post-experiment from video, and the noisy paths of
other robots are recorded by the UWB device during the experiment.

Fig. 22. Illustration of important details of the system. (a) UWB-based local-
ization system. (b) Comparatively larger virtual collision bubble around the robot
to avoid catastrophic failure for safety issues. (c) One of the ending situations
of the experiment.

Nooploop ultrawideband (UWB) P-A solution9 together with
visual-inertial odometry to enhance the general localization and
orientation detection of the robots in the outdoor environment.
Four to six UWB anchors [see Fig. 22(a)] are placed in the
60 × 60-m environment. Each robot is equipped with two UWB
modules that can average out location and orientation noises for
better results. In addition, it also provides additional information
to correct the heading position of the robots. For safety concerns,
in the outdoor environment, we use a larger detection range
(virtual collision bubble, see Fig. 22(b), for each robot to ensure

9[Online]. Available: https://www.nooploop.com/en/

https://www.nooploop.com/en/
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Fig. 23. Illustration of instant communication jitters. The red, green, and yel-
low lines show estimated 5%, 50%, and 95% quantiles of instant communication
jitters as a function of distance.

that no dangerous collision will happen when robots have high
speed.

2) Discussion of Possible Limitations in a Larger Area
a) Communication Range: Based on the assumption, we

set the communication boundary to be 45 m in an outdoor
environment. We collect statistical results from the communi-
cation robots to show the relationship between our assumptions
and real-world communication situations. We use telecommu-
nication customer premises equipment (CPE) to diversify the
bandwidth needed by the robots. To estimate the bandwidth
model, we consider a sampling process over two metrics 1)
Rx bandwidth 2) Tx bandwidth in polar coordinates, in which
we first perform a uniform angular sampling and a uniform
sampling on the radius. In this way, we get data samples
from eight directions. Due to that integral in polar space re-
sults in the length of the radius, we correct the sampling by
reweighting the samples. Then we resampled the dataset and
used the Radial basis function (with a Gaussian smoothing
kernel) to estimate the speed over the whole space. Fig. 5
shows the estimated Rx bandwidth over the area. In this figure,
we can observe that, though the signal on the communica-
tion robot is skewed, it can still have a larger than 5 Mbps
speed within a 45-m range, showing that our assumption is
correct.

b) Instant Communication Jitter: Another metric we are
interested in is instant jitter. We would like to know whether
distance can affect real-time communication. To this end, we
used the same method to measure the delay between the com-
munication and catcher robots. The distance does not affect
communication jitter much, despite dramatic bandwidth loss,
as shown in Fig. 5. Fig. 23 illustrates our results on instant
jitter. We collect data in eight directions to estimate the instant
jitter as a function of distance. After the data collection, we
use an ensemble method, a histogram-based gradient boosting
regression tree, as a general regression method to estimate the
5% quantile and 95% quantile of the communication delay. It
can be observed that the estimated mean value is smaller than
20 ms at 60 m.

V. CONCLUSION

In this work, we built a system to face the growing complexity,
heterogeneity, and robustness needs of adversarial catching in
future security and rescue scenarios. To handle the increasing

number of constraints, we used deep multiagent RL together
with two mechanisms, namely, asymmetric self-play and cur-
riculum learning, to handle the increasing heterogeneity and
number of agents in HMRS. We also conducted a bridging study
to evaluate the performance of a state-of-the-art multiagent path
finding approach called S2M2 with our approach in HMRS
catching scenarios. Combining different learning techniques,
we were able to learn faster during the training and to achieve
intrateam and cross-team cooperation among robots in the
catching team. By merging our model with a low-level control
algorithm, our system was able to be easily implemented in the
real world, resulting in a working real-world HMRS that can
perform catching tasks under realistic constraints. One of the
future applications after this is to develop a larger system in an
environment with more heterogeneity and uncertainty involved
for security and rescue HMRS applications.
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