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In chronic pain rehabilitation, physiotherapists adapt physical activity to patients’ performance based on their expression of
protective behavior, gradually exposing them to feared but harmless and essential everyday activities. As rehabilitation moves
outside the clinic, technology should automatically detect such behavior to provide similar support. Previous works have
shown the feasibility of automatic protective behavior detection (PBD) within a specific activity. In this paper, we investigate
the use of deep learning for PBD across activity types, using wearable motion capture and surface electromyography data
collected from healthy participants and people with chronic pain. We approach the problem by continuously detecting
protective behavior within an activity rather than estimating its overall presence. The best performance reaches mean F1 score
of 0.82 with leave-one-subject-out cross-validation. When protective behavior is modelled per activity type, performance is
mean F1 score of 0.77 for bend-down, 0.81 for one-leg-stand, 0.72 for sit-to-stand, 0.83 for stand-to-sit, and 0.67 for reach-
forward. This performance reaches excellent level of agreement with the average experts’ rating performance suggesting
potential for personalized chronic pain management at home. We analyze various parameters characterizing our approach to
understand how the results could generalize to other PBD datasets and different levels of ground truth granularity.
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1 INTRODUCTION
Body sensing technology provides new possibilities for physical rehabilitation as it is accessible outside of clinic
settings and enables personalized feedback for patients. In this paper, we address the possibility of augmenting
such technology to deal with psychological factors in long-term conditions namely chronic pain (CP). Specifically,
we aim to create technology that can infer the psychological states of people by detecting pain-related behavior
across different activity types. Detecting such behaviourwould enable technology to provide feedback, suggestions,
and support during self-directed rehabilitation.
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Physical rehabilitation is an important part of the management of CP, which is a condition where pain
associated with dysfunctional changes in the nervous system persists and leads to reduced engagement in
everyday functional activities despite lack of injury or tissue damage [7, 53, 57]. According to the fear-avoidance
theory, reduced engagement, and other maladaptive strategies (collectively referred to as ‘pain behaviors’) such
as protective behaviors [54], are a result of fear of pain, activity, or injury due to wrong association of harmless
activity with pain [49, 57]. During clinical rehabilitation sessions in pain management programs, physiotherapists
adapt their feedback and activity plan according to the protective behaviors that a patient exhibits [44, 45]. As
most part of CP physical rehabilitation is increasingly based on self-management at home, technology capable of
detecting these behaviors could provide such affect-based personalized support and activity plans [46]. Several
studies in this area have shown the feasibility of detecting the overall presence of protective behavior for a
specific activity [6, 34–36]. However, technology for CP self-management needs to be activity-independent, as
people have to engage in different activity types during their daily life without predefining them.

With comprehensive experiments on the EmoPain dataset [6] comprising wearable inertial measurement units
(IMUs) and surface electromyography (sEMG) data of people with CP and healthy participants, our work estab-
lishes important benchmark results for activity-independent PBD. We further analyze various data preparation
parameters in this study to expand our knowledge about using deep learning for PBD, and provide informative
takeaways for future studies. Extending our previous work [11]1, the contributions are four-fold:

• We extend the state-of-the-art by showing the feasibility of protective behavior detection (PBD) using deep
learning across activities and in a more continuous manner. This moves the field one step closer to being
able to continuously detect pain-relevant behavior in everyday life without knowing the type of activity in
advance.

• A set of data augmentation methods and combinations is investigated for dealing with the limited size of
the existing dataset. An analysis and discussion of these methods shed light on how each of them could
contribute to PBD beyond our dataset.

• The impact of data segmentation parameters on detection performance is also analyzed. Despite the optimal
segmentation window length for PBD being dependent on the activity type, we provide a set of criteria to
identify values for this parameter that work across different activities, showing how our approach could
generalize to other datasets for PBD.

• The robustness of our approach across different ground truth definitions is additionally explored. Com-
petitive performances are achieved with our approach in discriminating protective and non-protective
behavior, while the performance is above chance level in recognizing events with more uncertain ground
truth.

2 CATEGORIES OF PROTECTIVE BEHAVIOR
Protective behaviors have been highlighted as observable bodily-expressed pain behavior that can provide insight
into subjective pain experiences, and so inform intervention [47, 54]. First, they are significantly correlated with
self-reported pain and fear-related beliefs [51, 54]. Further, unlike facial and vocal expressions which primarily
communicative, protective behaviors are more reflective of perceived physical demand [47].

A systematic analysis of protective behavior was conducted in [54]. Using trained observers to manually label
videos of patients performing specific activities [47, 54], they showed that defined protective behaviors (see
Table 1 for a more detailed description about categories of protective behavior referring to [6, 54]) were exhibited
by people with CP, and tracking them is valuable for understanding how well a person with CP is coping with
the condition and engagement in everyday life. Unfortunately, domain-expert visual assessment is expensive and
impractical given the prevalence of CP [26, 56]. Constraining observation to clinical settings where a patient’s

1This work extends our research presented at the 23rd ACM International Symposium on Wearable Computers (ISWC’19) [11].
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Table 1. Five Categories of the Protective Behavior

Behavior category Definition

Guarding/Stiffness Stiff, interrupted or rigid movement.

Hesitation Stopping part way through a continuous movement with the movement appearing
broken into stages.

Support/Bracing Position in which a limb supports and maintains an abnormal distribution of weight
during a movement which could be done without support.

Jerky Motion Any sudden movement extraneous to be intended motion; not a pause as in hesitation.

Rubbing/Stimulation Massaging touching an affected body part with another body part or shaking hands
or legs.

behavior may be altered [9] does not address abilities (or struggles) in more complex everyday functioning. As
such, the need to better understand such behavior in real-life has led to consideration of technology as a way to
monitor protective behavior [38, 39]. However, existing approaches have been limited to monitoring of coarse
behaviors, such as studying how far and where a person moves with respect to their home using Fitbit and
GPS-based techniques [46]. The findings from this study showed limited correlations with key affective variables
that characterized the ability of the person to self-manage their conditions. There has been further evidence in
the literature, critiqued this work, that it is not only the quantity of the activity that matters but also the quality
of movement and the type of avoided movements or postures that provide insight into the ability of the person
with chronic pain to cope with and manage the condition [44].

In addition, as physical rehabilitation in chronic conditions transitions from the clinician-directed into self-
managed [37](in the form of self-managed activities or functional tasks such as loading the washing machine
[46]), visual inspection becomes unfeasible. On the other hand, self-report of pain behaviors [9] in everyday
functioning is unreliable as people with CP may not be conscious of their responses to pain or feared situations
[46]. More importantly, self-report does not allow for fine-grained measurement, necessary for insight into
subjective experiences [15, 54] and for informing adaptation of activity plans or other forms of feedback (e.g.
timely reminders to breathe deeply to reduce tension). Despite its limitation, the systematic analysis of activity
proposed in the above pain literature suggests that protective behavior can be automatically detected and such
capability could be embedded in a self-directed rehabilitation system.

3 RELATED WORKS
Here, we summarize relevant works on pain behavior and studies that have used deep learning for human activity
analysis.

3.1 Pain-Related Behavior Analysis
The use of body movement as a modality for automatic pain-related detection has been largely ignored even
though bodily behaviors such as protective behaviors are more pertinent to pain experiences than facial or vocal
expressions [47]. The relevance of the body lies in its indication of action tendency, which in the case of pain is to
protect against self-perceived harm or injury [1, 47]. The body is an effective modality for automatic detection of
affect although most of the work in this area has been focused on the so-called basic affective states (for survey,
see: [24, 25]).
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The majority of the work done on automatic detection of pain behavior has been on automatic differentiation
of people with CP from healthy control participants, as in the studies of [3, 16, 51] for CP on knee, lower back,
and neck respectively. Dickey et al. [13] and Olugbade et al. [34, 35] further discriminate levels of self-reported
pain within people with low back pain. A common finding in these studies is that the way a person with CP
uses (or avoids the use of) a painful anatomical segment provides information about subjective experiences.
[36] investigated movement behaviors that clinicians use in judging pain-related self-efficacy and showed the
feasibility of automatic detection based on these cues. The authors used features based on the method proposed
in [26] on automatic detection of protective behavior to characterize the cues. [36] further provides evidence that
low-cost body sensing technology can enable the detection of pain-related experiences in functional activities.

More relevant to our work is [6] where Aung et al. present the EmoPain dataset (also used in [34–36]) which
includes IMUs and sEMG data recorded while people with CP and healthy participants performed movements
reflective of everyday activities typically challenging for this cohort. The authors used the range of angles for 13
full-body joints (as the middle joints), the mean energy for these joints, and the mean sEMG recorded bilaterally
from the lower and upper back muscles for each complete instance of a movement type to predict the proportion
of the instance that was protective. They used Random Forests (RF) and the ground truth was based on mean
ratings across 4 expert raters: two physiotherapists and two clinical psychologists. They obtained between 0.019
and 0.034 mean squared error (mean = 0.027, standard deviation = 0.005) across the five activities, however,
Pearson’s correlation was between 0.16 and 0.71 (mean = 0.44, standard deviation = 0.16). The low correlation
despite low error suggests that although the predicted values were close to the ground truth, these errors are not
consistent in their direction (positive versus negative). Previous classification of a subset of these data focusing
on two movement types achieved better F1 scores of 0.81 and 0.73 respectively [5].

One important limitation of the above studies is that separate models were built for different types of activity,
requiring a prior knowledge about the activity in advance. In addition, the detection was only per overall activity
and the temporal information inherent to protective behavior was not leveraged. In this paper, we build on these
studies by investigating PBD based on one classification model that works across different activities.

3.2 Deep Learning for Human Activity Analysis
Deep learning is currently the leading approach in many previously challenging tasks, with increasing use in
healthcare [33]. As far as we know, studies using this method in the area of automatic detection of pain behavior
have mainly focused on detection from facial expressions. Much of these has been facilitated by the publicly
available UNBC-McMaster database [30], which contains about 200 sequences of over 40,000 face images collected
from 25 people with shoulder pain [40] during a variety of physiotherapist-guided activities.
Findings in human activity recognition point to the efficacy of convolutional and LSTM networks with body

movement data. For example, [20] used a bidirectional LSTM to classify physical activities in the Opportunity
[10] and PAMAP2 [42] datasets. They obtained mean F1 scores of 0.75 and 0.94 on the two datasets respectively
using leave-some-subjects-out (LSSO) cross-validation. In this study, data samples were frames of lengths of 1
and 5.12 second(s), with overlapping ratio of 50% and 78% respectively, from the activity instances. [19] achieved
mean F1 scores of 0.73 and 0.85, based on LSSO cross-validation, respectively on the same datasets using an
ensemble of two-layers LSTM networks with dropouts after each layer. This method further led to mean F1
score of 0.92 on the Skoda dataset [14]. Particularly, they proposed to train the model with data segmented with
multiple window lengths in a bootstrapping manner while the inference was conducted directly on each single
timesteps/samples. [31] used a stack of two convolutional followed by max pooling, one (more) convolutional,
LSTM, and dense (with softmax activation) layers trained on the Opportunity dataset to classify the activities in
the Skoda dataset. [20] further used a three-layer LSTM network to automatically detect freezing behavior in 10
people with Parkinson’s disease while they performed everyday activities, using data from the Daphnet Gait
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[8] dataset. Based on motion capture data from around the ankle, knee, and trunk, they obtained mean F1 score
of 0.76 with LSSO cross-validation. Given the similarity of the problem we address in this paper and theirs, we
focus on a LSTM network for automatic detection of protective behavior and we will compare its performance
with other variants used in previous studies.

There are few other studies where the detection of anomalous movement behaviors (such as due to a medical
condition) have been investigated. Such tasks are more challenging as these behaviors are embedded, as modula-
tions [28], in the performance of physical activity. One of these works is from Rad et al. [41] who used a network
of 3 convolutional layers, each followed by an average pooling layer, on motion capture data in the stereotypical
motor movements (SMMs) [4, 18] dataset recorded from the wrists and chest of 6 people with autism spectrum
disorder. Their goal was to detect stereotypical movements within window lengths of 1 second (overlapping
ratio of 87%). The SMMs dataset contains two streams of data with one stream collected in the lab and the other
in classroom, and their result of mean F1 score of 0.74 with the lab data outperformed the traditional feature
engineering method with Support Vector Machines and RF used in [4, 18]. Unsurprisingly, the average F1 score
obtained was only around 0.5 with the classroom data, where movements are less constrained, although the
poorer performance may also be due to smaller data size.
Beyond the greater challenge of detecting anomalous movement behaviors (compared to the recognition of

physical activity types) in data from real patients, such area also faces the difficulty of obtaining large volume of
training data for the positive class(es) (e.g. [43], leading to considerable skew in the datasets that exist, and also
constraining the use of deep neural network models. Although LSTM networks show a lot of promise based on
our review, care must be taken on how the input data is formatted, particularly in the approach taken to segment
the data along the temporal dimension. Previous works, such as the studies discussed above, have employed a
sliding-window segmentation, where most training data are length-fixed frames. This method is suitable for
real-time applications because it enables detection in small continuous streams of data through time. As far as
we know, except for [19] that used dynamic window lengths to generate training data, there has previously
been little discussion or justification for choices of segmentation parameters, such as the length of the window,
even though these are strongly related to system performance [23]. We address this problem in this paper. To
support our discussion on window parameters, the idea raised from [19] about training with dynamic frames and
inferring on single timesteps is also investigated.

4 METHOD
In this section, we first define the research scope by giving several considerations and respective solutions. Then,
we describe in detail the network architectures.

4.1 Design Considerations
Toward using neural networks for PBD, our research scope is defined by the following considerations:

• Independent on Activity type. To enable activity-independent PBD, we input only the low-level features
computed from the raw IMUs and sEMG data, without relying on the relation between the performed
activity and presented protective behavior.

• Modeling Temporal Nature. Given that IMUs and sEMG data are typically formatted in temporal se-
quences and that the volume of labelled data (e.g. the EmoPain dataset used in this study) is quite limited, a
shallow recurrent neural network (RNN) architecture is adopted to detect protective behavior.

• Emphasis on Per-Activity Continuous Detection. As protective behavior is exhibited along with the
execution of specific activity, and physiotherapists make the judgement based on the patient’s performance
during activity, our work is aimed at automatically detecting such behavior within instances of activity.
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Fig. 1. The stacked-LSTM network structure.

4.2 Stacked-LSTM and Dual-Stream LSTM Networks
Unlike the convolutional neural network (CNN), which is powerful for extracting spatial information, RNNs
have shown good capability for the learning from time-dependent data sequences. Past experience [19, 20] has
been that RNNs particularly LSTM networks outperform other network architectures like CNN on processing
temporal sequences collected with wearable sensors. Given the inherent dynamic nature of motion capture and
sEMG data, we use this RNN structure to build our network. A typical forward RNN structure that connects
in forward time is shown in Figure 1, with the input as a temporal sequence and computed state information
passing forward along the network. The core of any RNN architecture is the processing unit, which is a LSTM
unit in this study. Now a widely applied processing unit in RNNs, the LSTM [21] solved the vanishing gradient
problem which traditional RNNs faced in back-propagation over a long temporal sequence. Every LSTM unit
updates its internal states based on current input and previously stored information [21]. To extract temporal
information in a direction natural to the expression of protective behavior in physical activities, we focus on
forward information pass in our architecture. The LSTM unit that we use in this work is the vanilla variant
without peephole connection [17].

At timestep 𝑡 , the input to the corresponding LSTM unit are the current input data X𝑡 , previous hidden state
H𝑡−1, and the previous cell state C𝑡−1, while the output are the current hidden state H𝑡 and cell state C𝑡 . By using
this strategy, the output of at each timestep is based on the previously consecutive knowledge acquired. The
states are updated with an Input Gate with output i𝑡 , a Forget Gate with output f𝑡 , an Output Gate with output o𝑡 ,
and a Cell Gate with output c̃𝑡 . The computation within a LSTM unit at timestep 𝑡 is written as

𝜑𝑡 = 𝜎
(
W𝑥𝜑X𝑡 +Wℎ𝜑H𝑡−1 + b𝜑

)
, (1)

c̃𝑡 = tanh (W𝑥𝑐X𝑡 +Wℎ𝑐H𝑡−1 + b𝑐 ) , (2)
where 𝜑𝑡 ∈ {i𝑡 , f𝑡 , o𝑡 }, W( ·) and b( ·) are the weight matrix and bias vector respectively. 𝜎 (·) is the sigmoid
activation. Then, the output of a LSTM unit is computed as

C𝑡 = f𝑡 ⊙ C𝑡−1 + i𝑡 ⊙ c̃𝑡 , (3)

H𝑡 = o𝑡 ⊙ tanh(C𝑡 ), (4)
where ⊙ denotes the Hadamard product. The processing at the next timestep 𝑡 + 1 would take the current output
C𝑡 and H𝑡 to iterate with the same computation mentioned above.

We adopt a stacked-LSTM architecture with multiple LSTM layers computing on a single forward direction as
shown in Figure 1. As we examine the parameter impact of the sliding-window, the length of the input layer is
adjusted to the length of the input data frame created by each different sliding window size. Using the output at
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Fig. 2. The Dual-stream LSTM network where motion capture and sEMG data are processed separately.

the last timestep of the last LSTM layerH𝑇 in a fully-connected softmax layer, the computation of class probability
P = [𝑝1, . . . , 𝑝𝐾 ] where 𝐾 denotes the number of classes (in our case 𝐾 = 2), and the final one-hot label prediction
Y can be written as

P = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (W𝐻H𝑇 + b𝐻 ), (5)
Y = arg max

[1· · ·𝐾 ]
(P), (6)

whereW𝐻 and b𝐻 are weight matrix and bias vector of the softmax layer. Sample-wise prediction is also conducted
following [19], where each output state H𝑡 is used as input for a fully-connected layer with softmax activation
for classification instead of just using the last output H𝑇 . For the current single timestep 𝑡 , given similar output
of the last LSTM layer as above, the computation of class probability P𝑡 = [𝑝𝑡,1, . . . , 𝑝𝑡,𝐾 ] and the one-hot label
prediction Y𝑡 can be written as follows:

Pt = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (W𝐻H𝑡 + b𝐻 ) (7)

Y𝑡 = arg max
[1· · ·𝐾 ]

(P𝑡 ) (8)

We further explore a stacked-LSTM network that processes motion capture data and sEMG data separately.
We refer to it as Dual-stream LSTM. As shown in Figure 2, each stream of this network is a stacked-LSTM,
while representational layer fusion is conducted at decision level. A comparison with other neural networks is
additionally conducted in this work.

5 EXPERIMENT SETUP
In this section, we first present the EmoPain dataset. Then we discuss our data pre-processing and augmentation
methods, followed by a description of our applied validation methods, metrics, and model implementations.

5.1 The EmoPain Dataset
The Emo-Pain dataset [6] contains IMU and sEMG data collected from 26 healthy and 22 CP participants
performing physical activities selected by physiotherapists. Healthy participants (non-athlete) were included
to capture natural idiosyncratic ways of moving, rather than considering a gold standard model of activity
execution which is no longer an approach used by physiotherapists during rehabilitation. Healthy participants
were assumed to show no protective behavior during the data collection. Whilst the original dataset contains
data from 22 patients, 4 patients were left out because of errors in their sEMG data recordings. In order to avoid
biasing the model towards healthy participants, 12 healthy people were randomly selected. As a result, the data
used in this work is collected from 12 healthy and 18 CP participants.

Examples of protective and non-protective behavior samples from the EmoPain dataset are shown in Figure 3.
These avatars were built directly from participants’ motion capture data and represent instances of activity from
the dataset although the length of each sequence is not representative of the real duration. The average upper
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Fig. 3. Avatars in temporal sequences of healthy and CP participants during (left) reach-forward, (right) stand-to-sit and
sit-to-stand in the EmoPain database. The sEMG signal plotted for each avatar sequence is the average upper envelope of
rectified sEMG data collected from two sensors on lower back.

envelope of the rectified sEMG data collected from two sections on the lower back is also provided for each
avatar sequence respectively. As shown in Figure 3 (left), for reach-forward, differences between the healthy and
patients exist in stretching ranges and also the different strategies, with the latter simply raising the arms but not
bending forwards. We can also observe another strategy with the bottom patient keeping the feet closer together
making bending more difficult. Often, people with CP are unaware of avoiding facilitating movements/postures
as their attention is on pain rather than proprioceptive feedback. Protective strategies can also be observed in
the CP participant performing a stand-to-sit in Figure 3 (right). Differently from the top healthy participant, the
CP participant does not bend the trunk but exploits the leg muscles to lower themselves to the seat, a strategy
further facilitated by twisting the trunk to minimize the use of the left (possibly painful) part of the back. These
are just examples of strategies used by people with CP as each person personalizes the strategies to their physical
capabilities and their own understanding of what could be a dangerous movement.

The five activities used in this work are bend-down, one-leg-stand, sit-to-stand, stand-to-sit and reach-forward.
These were selected by physiotherapists in the development of EmoPain dataset to represent basic movements
that occur in a variety of daily functional activities, e.g. a person may need to bend to load the dishwasher or tie
the shoes, and stand on one leg to climb stairs or even walk. Given the activities used in this work can also
be considered as the building blocks for more complex functional activities (e.g. reach-forward vs. cleaning the
kitchen), experiments conducted on this dataset should shed some light into future works using other relevant
datasets that build on these five basic activities in the context of PBD. The rest of the data comprises transition
activities like standing still, sitting still, and walking around. Participants were asked to perform two trials of the
sequence of activities with different levels of difficulty. In each trial, activities were repeated multiple times, while
some CP participants skipped few repetitions perceived as too demanding (e.g. bend-down). During the normal
trial, participants were free to perform the activity as they pleased, e.g. they could stand on their preferred leg and
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start the activity at any time they preferred. For the difficult trial, participants were asked to start on a prompt
from the experimenter, and to carry a 2kg weight with both hands or in each hand during reach-forward and
bend-down respectively. These more difficult versions of the same activities simulated situations where a person
is under social pressure to move or is carrying bags. Again, these more difficult versions are often suggested by
physiotherapists to help people with CP gain confidence in moving even outside the home [47]. As a result, we
treat two trials of activities performed by one participant as two different sequences. 5 healthy people and 11 CP
patients did activities at both levels of difficulty. Therefore, we have 17 sequences (5×2+7) from the healthy and
29 sequences (11×2+7) from CP patients, which make 46 sequences in total, where each sequence contains all the
selected activities performed by one participant at one level of difficulty.

5.2 Data Preparation
In this section, we describe the data pre-processing pipeline we apply on the EmoPain dataset to enable the use
of deep learning models. To avoid ambiguity, we clarify that ‘sequence’ refers to the data sequence containing
all the activities performed by a subject during one trial; ‘instance’ is the data of a single activity performance;
‘frame’ is a small segment containing several samples within a data instance; ‘sample’ is a single data vector at a
single timestep (for our case is at 1/60 second as the data sampling rate is 60Hz).

5.2.1 Low-Level Feature Computation. In the EmoPain dataset, the motion capture data is organized as temporal
sequences of 3D coordinates collected from 18 microelectromechanical (MEMS) based IMUs at 60Hz. We computed
13 low-level features suggested in Aung et al [6] corresponding to 13 joint angles in 3D space based on the 26
anatomical joints. Also, we computed 13 ‘energy’ features using the square of the angular velocities of each
angle. Muscle activity captured from four back muscle groups was pre-processed as the upper envelope of the
rectified sEMG data. We therefore have 30 features in total for each sample: 13 joint angles, 13 energies, and 4
sEMG signals from the original dataset. To maintain the temporal order of the data, the data matrix is formed as
Figure 4.

5.2.2 Data Segmentation. Both for the training and testing set, a sliding-window segmentation method [2] is
applied to generate consecutive frames from each activity instance. The parameters related to the sliding window
are justified and analyzed on the basis of the different activity types in a later section. Figure 5 gives an illustration
of the segmentation conducted on a data sequence. The five functional activities are separated by transition
movements. We segment such instances into frames from each type of activity. Note that the model does not take
the type of activity as an input in the training process, but instead aims at generalizing PBD across all activity
types. During segmentation, one issue is to handle edge cases, i.e. when the sliding window is at the end of an
activity area. We explore three typical ways of handling such case in the context of sensor data with an aim to
understand their effect on PBD:

    A1 A2 ... A13 E1 E2 ... E13 sEMG1 sEMG2sEMG3 sEMG4
A2 ... A13 E1 E2 ... E13 sEMG1 sEMG2sEMG3 sEMG4

t

t + 1

t + N

30 dimensions

    A1

A2 ... A13 E1 E2 ... E13 sEMG1 sEMG2sEMG3 sEMG4    A1

Fig. 4. The data matrix of a sequence. A1 to A13 are the inner angles, E1 to E13 are the energies and sEMG1 to sEMG4 are
the rectified sEMG data.
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Fig. 5. The applied sliding-window segmentation and padding methods. W is the window length; S is the sliding step.

• 0-padding, which is to pad the frame with zeroes. This is a typical approach used in activity recognition in
computer vision literature [22, 50].

• Last-padding, which is to use the last sample of that activity and repeatedly add it to the frame.
• Next-padding, which is to use the samples following the activity for padding, as a way to simulate continuous
natural transition between activities.

5.2.3 Data Augmentation. To address the limited size of EmoPain dataset and more generally the difficulty of
capturing naturalistic dataset from patients, especially during the current COVID-19 pandemic, we investigate
the suitability of data augmentation techniques for PBD. Data augmentation is critical for mitigating the risk of
over-fitting that rises when applying deep learning on smaller datasets. The three data augmentation methods
explored are:

• Reversing, which is to reuse the data in a temporally reversed direction. This method is proposed as some
activity types in the EmoPain dataset can be thought of mirror reflections, e.g. stand to sit and sit to stand.

• Jittering [48], which is to simulate the signal noise that may exist during data capturing. We create the
normal Gaussian noise with three standard deviations of 0.05, 0.1, 0.15 and globally add them to the original
data respectively, to create three extra training sets.

• Cropping [48], which is to simulate unexpected data loss. We randomly set the data at random timesteps
for random joint angles to 0 with selection probabilities of 5%, 10% and 15% respectively, to create another
three training sets.

Note, the three methods do not change the temporal consistency (in forward or backward direction) of the data
to a noticeable degree. Therefore, the labels stay unchanged. The number of frames after using a combination of
these augmentation methods is increased from ∼3k to ∼21k.

5.2.4 Ground Truth Definition. Rather than discriminating between the specific types of protective behavior
listed in Table 1, we treat them as a single class, referred to as protective behavior. The reasons are that: i) the
primary discrimination that matters in providing personalized support to CP patients is about whether protective
behavior has occurred or not; ii) the number of instances for each behavior type is too limited to investigate
using deep learning.
According to [6], the labelling of protective behavior in the EmoPain dataset was completed separately by

four expert raters, namely 2 physiotherapists and 2 clinical psychologists. Each expert rater inspected every
patient’s video (gathered in synchrony with the IMUs and sEMG data) on-site and marked the data sample starts
and ends where they observed each of the protective behaviors. Figure 6 presents a visualization of the coding
result of a data sequence of one CP participant. Following a typical approach for building the ground truth for
affective computing [25], based on the sliding-window segmentation, we define the ground truth of a frame
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Fig. 6. The visualization of the binary coding for protective behavior by 4 expert raters.

based on majority-voting: the frame is labelled as protective if at least two raters each found at least 50% of the
samples within it to be protective. Similarly, a sample within a frame is considered protective if it is included in
the protective period marked by at least two raters. The rationale behind our frame-wise approach is also that
the label of a frame needs to capture the relevant (affective) need within it, rather than merely mathematically
encapsulate the labels of the samples within the frame. From the modeling perspective, a system should be
trained to detect the salient moments of affective states within a frame rather than to learn from artificial and
pre-segmented positive/negative samples.

5.3 Validations and Metrics
Three different validation methods are used to evaluate PBD performance. First, a 6-fold leave-some-subjects-out
(LSSO) cross-validation is applied, where at each fold the data of 5 out of the 30 subjects are left out and used for
testing. To balance the number of CP and healthy participants, we ensured that each test fold contains data from
3 CP and 2 healthy participants respectively. Second, we envision that the use of our model will be in the context
of personal rehabilitation where the model can be further tailored to the same individual, so a cross-validation
by leaving some instances out (LSIO) is also used, where data (not from the same instances) from a participant
could appear both in training and test sets. Finally, the standard leave-one-subject-out (LOSO) cross-validation is
applied to further demonstrate the generalization capabilities of a model to unseen individuals.
Given that PBD is a binary classification problem in our scenario where the detection of both protective and

non-protective behavior is similarly important, we report the mean F1 score as a metric. Furthermore, such metric
is in line with other works [20] in relevant area. The mean F1 Score 𝐹𝑚 is computed as:

𝐹𝑚 =
2
|𝑐 |

∑
𝑐

𝑝𝑟𝑒𝑐 × 𝑟𝑒𝑐𝑎𝑙𝑙𝑐
𝑝𝑟𝑒𝑐 + 𝑟𝑒𝑐𝑎𝑙𝑙𝑐

, (9)

where 𝑝𝑟𝑒𝑐 and 𝑟𝑒𝑐𝑎𝑙𝑙𝑐 is the precision and recall ratio of class 𝑐 = {0, 1} (protective and non-protective). Moreover,
for completeness, the accuracy (Acc), mean precision (Pre), mean recall (Re) and confusion matrices are reported.
To further understand how different architectures and parameters compare with each other, we carry out statistical
tests (repeated-measures ANOVA and post-hoc paired t-tests) on the LOSO cross-validation results.

5.4 Comparison Methods and Model Implementations
The search on hyperparameters was run for each method compared. Here, we take the stacked-LSTM as an
example to show the general process. When comparing the number of layers, the number of hidden units in each
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layer is set to 32 while the number of layers is set to 3 when comparing the number of hidden units. The default
segmentation (3s long, 75% overlapping and 0-padding) and augmentation (jittering + cropping) are applied.
These default parameters have been selected through initial exploration of the data. Results of the tuning process
for the stacked-LSTM are reported in Figure 7. Increasing the number of network layers (from 3 layers) or hidden
units (from 32 units) led to decrease in performance possibly because they introduce more training parameters
which may have resulted in over-fitting given the limited data size. For the Dual-stream LSTM, three LSTM layers
are used in each stream while the number of hidden units of each layer in the motion-capture stream and sEMG
stream is set to 24 and 8 respectively, and each LSTM layer is also followed by a Dropout layer with probability
of 0.5. The weights for loss updating applied to both streams are equal.
All the neural network methods used in our experiments employed the Adam optimizer [27] to update the

weight, and the learning rate is fixed to 0.001. The mini-batch size is determined according to the size of the
training set. For all the neural network methods, the initial mini-batch size is fixed to 20. The deep learning
framework is implemented using TensorFlow with Keras. The hardware used is a workstation with Intel i7
8700K and Nvidia RTX 1080 Ti, while the average training time of the stacked-LSTM using the Emo-Pain dataset
after augmentation is around 15ms per iteration. For comparison, we use CNN, bi-directional LSTM network
(bi-LSTM) and convolutional LSTM network (Conv-LSTM) mentioned in [20, 31, 41] to show the advantage
of using stacked-LSTM. In addition, we considered the RF as was used in [5, 6] to model guarding behavior
(one category of protective behavior) in the EmoPain dataset. It should be noted that differently from [5, 6], we
performed the modeling across different activity types. Our default segmentation (3s long, 75% overlapping and
0-padding) is used for the comparison experiment. For the RF model, traditional features (clarified below) are
extracted from the 3s frames. Our default augmentation method combining jittering and cropping is applied to
the training data for all of the compared methods. Further details about each architecture compared are provided
below:
CNN [41]. The 3-layer CNN architecture used in this work is implemented according to [41], while the

classification result is produced by a softmax layer at final stage instead of using an extra SVM classifier. The
convolution kernel size is 1×10, max pooling size is 1×2 and number of feature maps is 10.

ConvLSTM [31].The architecture is the same that was used in [31]. The size of the convolution kernel is set to
1×10, while max pooling size is 1×2 and the number of feature maps in convolutional layers and hidden units in
LSTM layers is set to 10 and 32 respectively.
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Fig. 7. Justification of the hyperparameters of stacked-LSTM.
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Table 2. Comparison Results Using the Leave-Some-Subjects-Out (LSSO), Leave-One-Subject-Out (LOSO) and Leave-Some-
Instances-Out (LSIO) Cross-validation Methods.

Method LSSO LOSO LSIO
Acc 𝐹𝑚 Re Pre Acc 𝐹𝑚 Re Pre 𝑝-value Acc 𝐹𝑚 Re Pre

RF-frames 0.62 0.55 0.57 0.60 0.72 0.67 0.67 0.74 0.004 0.59 0.54 0.55 0.56
CNN 0.63 0.54 0.56 0.59 0.77 0.70 0.69 0.80 0.003 0.67 0.61 0.61 0.67
ConvLSTM 0.62 0.61 0.61 0.61 0.79 0.77 0.76 0.80 0.032 0.66 0.65 0.67 0.66
bi-LSTM 0.71 0.69 0.69 0.70 0.80 0.79 0.79 0.80 0.05 0.73 0.72 0.73 0.72
Dual-stream LSTM 0.75 0.74 0.75 0.74 0.80 0.80 0.80 0.79 >0.05 0.73 0.72 0.72 0.72
Stacked-LSTM 0.74 0.73 0.74 0.73 0.83 0.82 0.83 0.81 - 0.75 0.74 0.75 0.74

bi-LSTM [20]. As an alternative flavor of LSTM network, bi-LSTM network utilizes context information in
both the ‘past’ and the ‘future’ to compute the output at each timestep. We implemented the bi-LSTM according
to [20]. The hidden units in each LSTM layer is set to 16.

Random Forest [5, 6]. We use a RF algorithm with 30 trees for frame-based detection. We call it RF-frame. First,
we extracted length-fixed feature vectors for each frame, with the total number of feature vector per each frame
computed after augmentation being 18,180. Those feature vectors are further divided into training and test sets
based on the given (LSSO, LSIO, or LOSO) cross-validation method. The features computed comprises the range
of the joint angles, the means of joint acceleration value, and the means of rectified sEMG value, which were
used in [5]. The dimension of the input feature vector was 30.

6 EVALUATION
In this section, we first present the results achieved with stacked-LSTM, Dual-stream LSTM, and the compared
methods, based on the default segmentation (3s long, 75% overlapping and 0-padding) and augmentation (jittering
and cropping) methods. Then, we analyze the use of other padding as well as augmentation methods and
window lengths on PBD for different activity types and across activities. Finally, we investigate the uncertainty
in majority-voted ground truth definition.

6.1 Comparison Experiment
The results obtained in the comparison experiment are reported in Table 2. We can see that the stacked-LSTM
achieves a best mean F1 score of 0.82, 0.74 in LOSO and LSIO cross-validations respectively while Dual-stream
LSTM achieves a best mean F1 score of 0.74 in LSSO. A repeated-measures ANOVA shows significant difference
in performance (LOSO results) between the algorithms: 𝐹 (0.65, 4.054) = 6.311, 𝑝 < 0.001, 𝜇2 = 0.179. Further post-
hoc paired t-tests with Bonferroni correction (see Table 2) shows that the stacked-LSTM performs significantly
better than the RF-frames (𝑝 = 0.004) and CNN (𝑝 = 0.003). It also shows that bi-LSTM is not significantly different
from stacked-LSTM (at significance level 𝑝 = 0.05) but is better than RF-Frames with marginal significance
(𝑝 = 0.061). The Dual-LSTM and Conv-LSTM do not significantly differ in performance with any of the other
methods. These results suggest that stacked-LSTM does indeed provide overall better performance and that
recurrent models like LSTM network are better at processing movement and sEMG data for PBD. Interestingly, the
Conv-LSTM performs slightly better than CNN, possibly because it is designed to integrate temporal information
in such data.
For the 18 folds in LOSO cross-validation where testing subjects are patients, we further computed two-way

mixed, absolute agreement intraclass correlation (ICC) to compare the level of agreement between the ground
truth (based on labels from the expert raters) and the stacked-LSTM with the level of agreement between the
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Fig. 8. Confusion matrix of stacked-LSTM in LOSO cross-validation. ‘NP’=non-protective, ‘P’=protective.

expert raters. The ICC is a standard method for computing interrater agreement [32]. The absolute agreement
ICC, which we used, measures strict agreement, rather than the more liberal similarity between rank order of the
alternative ‘consensus ICC’ [55]. A two-way mixed model was used in order to account for rater effect [55]. We
found ICC = 0.215 (single measures) and 0.523 (average measures) with 𝑝 = 4.3 × 10−130 between the raters, and
ICC=0.568 (single measures) and 0.724 (average measures) with 𝑝 = 3.1 × 10−159 between stacked-LSTM and the
ground truth based on the labels from these raters. This finding suggests that stacked-LSTM is able to provide
excellent level of agreement [52] with the average expert rater, which aligns with the goal of our modelling. The
agreement is also higher than that between the raters although this may be explained by the fact that unlike
the raters, whose ratings are based on their independent experiences and background (even if they did have
discussions to resolve rating disagreements), the model’s training is solely based on the average rater’s labelling.

The confusion matrix for the result achieved with stacked-LSTM in LOSO cross-validation is given in Figure 8.
As the model was also running on healthy subjects, protective behavior had been detected in some of the healthy
participants’ frames. In particular, after checking with previous labellers as well as the videos and the data
animations of several specific healthy subjects, we identified various reasons for possible misclassifications: i)
some healthy participants were not familiar with the activity or instructions from experimenter and so hesitated
when performing; ii) some were not able to conduct specific activities normally like reaching forward due to
other physical issues, e.g. obesity, rather than CP.

6.2 Evaluation of Data Preparation Methods
The results in the previous subsection have shown that activity-independent PBD is feasible and can be carried
out continuously within each instance of activity. In following subsections, we analyze three critical aspects of
our approach (padding, data augmentation, and sliding window length) to better understand how they may affect
PBD within activity types that build on those similar to the ones presented in the EmoPain dataset. We adopt
the stacked-LSTM (3 layers each with 32 hidden units) with default segmentation (3s long, 75% overlapping and
0-padding) and augmentation (jittering and cropping) methods as the baseline approach while systematically
varying these methods and length values. The results for the default parameters provided in Section 6.1 will work
as a reference rather than as the best in our exploration.

6.2.1 Comparison of Padding Methods. Two other padding methods are explored, namely Last-padding and
Next-padding. In Last-padding, the last sample of that activity is used to pad the window, instead of zeros; whereas
in Next-padding, the samples of the following activity are used.

A repeated-measures ANOVA was carried out to understand if the difference in performance (based on LOSO
mean F1 scores) among the three padding methods are statistically significant. Given that sphericity could not be
assumed (𝑝 < .001), Greenhouse-Geiser correction was applied to the degrees of freedom. Results are summarized
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Table 3. PBD Performances (𝐹𝑚) Under Three Padding Methods.

Padding method LOSO LSSO LSIO 𝑝-value with Next-padding
(< 0.05)

𝑝-value with 0-padding
(< 0.05)

Last-padding 0.72 0.69 0.66 0.135 0.012
Next-padding 0.79 0.69 0.66 - 0.371
0-padding 0.82 0.73 0.72 0.371 -

Table 4. PBD Performances (𝐹𝑚) under Three Data Augmentation Methods.

Augmentation method Training
Size LOSO LSSO LSIO 𝑝-value with Jittering + Cropping

(< 0.05)
Original ∼3k 0.66 0.55 0.62 0.003
Reversing ∼6k 0.40 0.52 0.53 <0.001
Jittering ∼21k 0.69 0.63 0.67 0.006
Cropping ∼21k 0.66 0.68 0.68 0.001
Jittering+cropping ∼21k 0.82 0.73 0.72 -

in Table 3. The results show an effect of padding method on PBD performance (𝐹 (1.265, 0.162) = 6.350, 𝑝 <

0.011, 𝜇2 = 0.180). Further post-hoc paired t-tests with Bonferroni corrections show that Last-padding leads to
significantly worse performance than 0-padding (𝑝 = 0.012). This could be because by padding with the last
sample, it would seem that the subject is maintaining that last position and ‘unable’ or ‘unwilling’ to move
further, and so appearing as being protective. As zero could be interpreted as a special null value, the 0-padding
method may not suffer from this problem. A competitive performance is achieved with Next-padding with no
statistically significant difference to 0-Padding. Beyond the tuning of the network with 0-padding, the slightly
lower performance with next-padding could be due to the fact that many CP participants put clear pauses between
each activity. The significance of the breaks in padding is that they may seem like freezing behavior. In the
context of daily functional activities, we expect that people would be more fluid in their transitions from one
activity to another, leading to improved performance with Next-padding. However, as such breaks may actually
occur in everyday functioning for people with CP as they tend to prepare themselves before starting another
activity due to the fear of movement, the Last-padding in this context may correctly bias the model towards
protective behavior, for the activity prior to a given break, suggesting that it possibly could also become an
adequate method for this case.

6.2.2 Comparison of AugmentationMethods. Three additional data augmentationmethods are explored: reversing,
jittering, and cropping. We also considered the use of no augmentation at all. For the jittering method, standard
deviations of 0.05, 0.1, 0.15, 0.2, 0.25, and 0.3 are used. For the cropping method, selection probabilities of 5%, 10%,
15%, 20%, 25%, 30% are used. A repeated-measures ANOVA showed significant difference in performance (based
on LOSO mean F1 scores) between the augmentation methods (𝐹 (0.704, 4) = 6.697, 𝑝 < 0.001, 𝜇2 = 0.39). The
results and p-values computed in post-hoc paired t-tests with Bonferroni correction are reported in Table 4.
Although with a training set larger than that without augmentation, the reversing method shows the worst

performance and is the only augmentation method (of the four explored) which has lower performance than the
baseline without augmentation. This is possibly due to the fact that the reversing method alters the temporal
dynamics that characterize how protective behavior is presented during an activity. Although all activities
included in the dataset are reversible, e.g. ‘stand-to-sit vs. sit-to-stand’ or ‘reach-forward (and returning)’, the
expression of protective behavior is quite different between such pairs. For instance, in sitting down people with
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CP tend to bend their trunk at the beginning to reach for the seat for support before descending whereas in
standing up, they avoid bending the trunk due to the fear of pain and mainly push up using their legs and arms.
Jittering or cropping augmentation does not noticeably affect the temporal order of the data. Further, they may
simulate real-life experience of signal noise and accidental data loss.

6.3 Analysis on Sliding-Window Lengths
The boxplots in Figure 9 (left) show the distribution of the duration of each activity in the EmoPain dataset. The
figure suggests that there are notable differences between activities and even between instances within the same
activity, possibly due to different physical and psychological capabilities of participants. Reach-forward has a
large variation which may be because the end point of the activity is much more affected by the capabilities of the
person performing the movement rather than in the middle of just holding the position. [23] suggested that the
window length needs to be adjusted to different types of activity while the overlapping ratio is a trade-off between
the computation load and the segmentation accuracy. Consequently, we conducted an independent window
length analysis here to investigate the PBD performance with different activity types based on different window
lengths. Further, we carried out an additional experiment to better understand the effect of window lengths
on PBD performance using all activity types. The stacked-LSTM (3 LSTM layers each with 32 hidden units) is
used together with our default segmentation (75% overlapping and 0-padding) and augmentation (jittering and
cropping).

6.3.1 Impact of Sliding-Window Length on PBD Performance per Activity. For the first set of experiments with
separate models for each activity type, we explored window lengths from 1 to 7s. It should be noted that even
though the duration of sit-to-stand and stand-to-sit are similar, we treated them as two separate activity types.
This is because, in real life, they are not generally performed consecutively. The mean F1 scores for each window
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Fig. 9. (Left): the duration distribution of activity instances in EmoPain database, where 60 samples=1 second. (Right): the
impact of sliding-window length on performance in different activity types.
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length are plotted in Figure 9 (right) for each activity type, with a red line shows the average of the performances
over the five activity types.
A repeated-measure ANOVA was run to understand the effect of window lengths and activity types on

PBD performance (mean F1 scores) based on the folds of LSSO cross-validation. The results showed an effect
of window length (𝐹 = 5.212, 𝑝 = 0.001, 𝜇2 = 0.173) and of window length and activity type interaction
(𝐹 = 3.188, 𝑝 = 0.01, 𝜇2 = 0.338). Post-hoc t-test shows that the window lengths in the range from 2.5s to 4s show
significantly better F1 scores (𝑝 < 0.05) than other lengths outside the range except for 5s. However, the detection
at 5s only shows significant difference with 7s (𝑝 = 0.01), and is approaching significantly lower performance
than 4s (𝑝 = 0.056). We also explored the post-hoc t-test for the interaction between window length and activity
type; however, this did not show clear statistical differences possibly due to the limited points for each activity (in
each of the 6 validation folds); still, a few observations should be made from these results according to Figure 9:

• Although stand-to-sit and sit-to-stand have similarly short duration, detection performances given window
lengths larger than 2.5s differ between the two, and whereas the best performance for sit-to-stand is 2.5,
performance reaches its peak at 4s for stand-to-sit. Such differences could be due to the 0-padding used
in this study; for stand-to-sit, a person generally feels safe after having reached the chair and they then
relax, so padding with 0 given larger window lengths may improve or at least maintain the detection of
such non-protective behavior; however, when a person is standing up from a chair, the protective behavior
(e.g. guarding) generally persists at the standing position given the loss of support, thus 0-padding at the
activity conclusion could interfere with the interpretation of such behavior;

• Despite the fact that the best performance for one-leg-stand is at window length of 4s, this activity is less
affected by the different window lengths, which could be explained by its characteristic given that this
activity is transient (consists of simply raising and dropping the leg) but is also sustained because the
participant tends to hold the position (possibly oscillating the leg up and down); as such, the performances
remain high across short and long windows;

• Detection on bend-down and reach-forward instead benefits from longer window lengths, possibly because
the bending movement that characterizes them is common to many other activities (e.g. CP participants
tend to bend the trunk first in sitting down to search for support and normal standing up involves a bend
as well) and so the system needs more information to know how to interpret bending movement.

Given the analysis above, we shortlist window lengths of 2.5s, 3s and 4s for the activity-independent PBD
exploration reported in the next subsection.

6.3.2 Impact of Sliding-Window Length on PBD Performance across Activities. With all the activity instances
pulled together, we conduct LOSO experiments with the three window lengths (2.5s, 3s and 4s). The results
are reported in Table 5. A high performance is achieved for all three window lengths, but a repeated-measures
ANOVA showed significant difference in performance (LOSO mean F1 scores) between the three window lengths:
𝐹 (0.107, 1.322) = 4.024, 𝑝 < 0.041, 𝜇2 = 0.122. Post-hoc paired t-tests with Bonferroni corrections on the mean
F1 scores show that the 3s window leads to significantly better performances than the window of 4 seconds
(𝑝 = 0.032) but its performance has only marginal significance in comparison with the 2.5s window (𝑝 = 0.075).
No statistical differences existed between the performances achieved with the 4s and 2.5s windows. Looking
further at the results (mean F1 scores) across the 30 subjects, reported in Figure 10 (number 1 to 12 represent
healthy participants, 13 to 30 represent CP participants), we can notice some length effects: i) the detection
performances on most control subjects are 100% accurate across the three window lengths; this could be the result
of the imbalanced distribution in training set where non-protective data take a bigger proportion or because
protective performances of activities tend to be shorter and possibly suffer more from the padding effect; ii)
the detection results on CP participants fluctuate with window lengths without a clear pattern, especially for
subject 13, 16, 17, 22, 26, 28, 29 and 30; this highlights some effects of individual differences on the temporal
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Table 5. PBD Performances (𝐹𝑚) under Three Sliding-window Lengths across all Activities.

Validation method Activity type 2.5s 3s 4s
LSSO Bend-down 0.64 0.75 0.75

One-leg-stand 0.77 0.8 0.81
Sit-to-stand 0.72 0.69 0.66
Stand-to-sit 0.71 0.76 0.83

Reach-forward 0.66 0.67 0.67
LOSO All activities 0.78 0.82 0.73

Mean

F1-Score

Impact of window length on individuals

Fig. 10. Impact of sliding-window length on different subjects. 1-12: healthy participants, 13-30: CP participants.

characteristics of the data as can be also seen in the boxplots in Figure 9 (left); it is possibly due to the high
variability in protective movement strategies and duration of performing each activity between patients.

Overall, the statistical analyses in the two sets of experiment above suggest that: i) longer window lengths (>2s)
are preferred for activity-independent PBD, suggesting that the window needs to capture sufficient information
to discriminate movements necessary to perform an activity and movements related to protective behavior; but
ii) window lengths that are longer than the duration of most activity types suffer from the padding effect and
lead to reduction in performances. Given the representativeness of our dataset and the patient variability, we
expect that these principles would also apply to other datasets that involve activities that build on the five basic
activities used in this study.

6.3.3 Prediction on Single Timesteps. The training and testing conducted so far is all based on frames, while
from [19] we learned that, for a continuous classification in HAR scenario, one could try to train the model with
frames of variant lengths and conduct prediction on single timesteps. Here, to maintain the completeness of this
work, we report the results (see Table 6) achieved with a similar approach, where frames generated from different
sliding-windows (2.5s, 3s and 4s) are used for training with prediction done on single timesteps. Stacked-LSTM
with all the three validation methods is used. The number frames of each comparison method is the same as to
remove the influence of different sizes of training data.

From the results we can see that: i) training and testing on frameswith length of 3s lead to the best result for LSSO
and LSIO cross-validations; ii) training with windows of different lengths is better than using single window length
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Table 6. PBD Performances (𝐹𝑚) under Different Training-testing Sets.

Training and testing set LOSO LSSO LSIO 𝑝-value
(<0.05)

Frames of 3s length (default) 0.82 0.74 0.74 -
Train with frames of 3s, test on single timesteps 0.74 0.62 0.61 0.039
Train with frames of 2.5s, 3s, 4s, test on single timesteps 0.84 0.67 0.68 0.92

when testing on single timestep and achieve the overall best result based on LOSO cross-validation, which implies
the impact of frame lengths during training stage. A repeated-measures ANOVA showed significant difference in
performance (LOSO mean F1 scores) between the three methods: 𝐹 (0.081, 2) = 8.645, 𝑝 < 0.002, 𝜇2 = 0.23. Further,
post-hoc paired t-tests with Bonferroni corrections on the mean F1 scores (LOSO) show that training and testing
on 3s frames is significantly better than training with 3s frames and testing on single timesteps (𝑝 = 0.039), but
no significance was found between the former and training with 2.5s, 3s, and 4s frame lengths and testing on
single timesteps (𝑝 = 0.92). Based on the unique characteristic of protective behavior, the reason for such results
can be the inadaptability of conducting prediction on a single timestep as: i) protective behavior is exhibited
in an intermittent way along with the execution of a specific activity, and it is difficult to judge the presence
of protective behavior from a single timestep; ii) the labelling from experts was created by locating the onset
sample and offset sample of a protective behavior (period) rather than deciding on each single timesteps and so
the disagreement among labellers is enlarged in considering the ground truth for a single timestep.

6.4 Modeling the Uncertainty in Ground Truth Definition
For all the experiments conducted above, we have used a majority-voting strategy to define the ground truth of
each segmented frame (window). Particularly, a frame was defined as protective only if at least two raters each
labelled more than 50% samples within it as protective. Therein, a frame not satisfying such criteria would be
treated as non-protective even if at least some samples within it had been labelled as protective by the raters.
This strategy could be problematic as it ignores uncertainties due to disagreement between raters.

Hence, we explore when the problem is redefined as a tri-class task considering such uncertainties. We
conducted two experiments using the 3-layer stacked-LSTM adopted in previous subsections with our default
data segmentation (3s long, 75% overlapping and 0-padding) and augmentation (jittering plus cropping). We
focused on three classes namely: non-protective, protective, and uncertain. For the two tri-class experiments, we
specify a frame as protective only if at least N raters each labelled more than 50% samples within it as protective.
For Tri-Class Experiment 1, N=2 while N=3 for the Tri-Class Experiment 2. For the two experiments, a frame is
defined as non-protective only if all raters labelled 0 samples as protective within it, and there is a third class
named ‘uncertain’ for all remaining frames. We do not consider an even stricter definition of the protective
class for two reasons: i) it would capture only very strong protective behavior leaving out many subtle but
significant instances; ii) it could also largely reduce the amount of data in the protective class and so hinder the
learning process. Therefore, we decided to explore the two tri-class definitions stated above, with one being more
conservative (Tri-Class Experiment 2) than the other, to understand the effect of having more granularity in the
ground truth. LOSO cross-validation was used in this subsection.

The F1 scores for each class of the tri-class experiments and the binary-class experiment conducted in Section 6.1
(based on LOSO cross-validation) are reported in Table 7, with confusion matrices in Figure 11. We can see that,
for Tri-Class Experiment 1, both non-protective (F1 score = 0.76) and protective (F1 score = 0.72) classes show
high detection performances despite the increase in complexity with respect to the binary-class experiment (F1
scores of 0.87 and 0.77 respectively). The recognition of the uncertain class in this experiment appears to be the
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Table 7. PBD Performances (𝐹𝑚) under four ground truth definitions.

Non-protective class(es) Uncertain class Protective class Average
Binary-class experiment 0.87 - 0.77 0.82
Tri-class experiment 1 0.76 0.41 0.72 0.63
Tri-class experiment 2 0.71 0.70 0.55 0.65

Quad-class experiment 0.79 0.47 (Uncer-1)
0.39 (Uncer-2) 0.55 0.55
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33.46% 8.03%

4.05% 80.95% 15.00%
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Fig. 11. The confusion matrix for the tri-class experiment 1 (left) and 2 (right).

most difficult. In the Tri-Class Experiment 2, the detection performance for the protective class decreases partly
because the training size for the uncertain class becomes larger and this biases the classification. Such issue
could be addressed by further working on a stratified data augmentation of the dataset or by using penalization
mechanisms that reduce the bias towards the larger class as explored in [12].

To further understand the effect of uncertainty on the modeling, we have analysed the detection performance
for the uncertain class in Tri-Class Experiment 2. For each frame in this class, we have computed the sum of
the ratio of protective labels from each rater, obtaining a value typically between 0 and 3. It should be noted
that frames with ratio sums higher than 3 are to be interpreted as protective. Four overlapping histograms
each describing different sets of the ratio sums for the uncertain-class frames are shown in Figure 12 (left) with
respect to different detection outcomes respectively. It is seen that the overall distribution of the protective
samples ratio for all frames (grey bins) in the uncertain class is bimodal, and that the correctly recognized frames
(green bins) are consistent with this pattern. In addition, we can see that most misclassifications toward the
non-protective class (blue bins) fall mainly on the left side of the histogram, i.e. they are frames considered by
most of the expert raters as mainly non-protective, thus such misclassifications are not the major error. Whereas,
the misclassifications toward the protective class (orange bins) are spread across the two sides of the histogram.

The bimodal distribution found in the uncertain class led us to perform a third experiment where the uncertain
class is split into two (uncertain-1 and uncertain-2) given the bimodal pattern, with a ratio sum threshold set to
1.5, so that there are four classes in total. For the Quad-Class Experiment, we used the same 3-layer stacked-LSTM
network with the segmentation and augmentation methods stated at the beginning of this subsection. The F1
scores are reported in Table 7 with confusion matrix shown in Figure 12 (right). We can see that the classification
of protective frames is still above chance level despite the limited number of instances for each class in this
experiment. The major errors occur in the two uncertain classes, with misclassifications toward adjacent classes.
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Fig. 12. (Left): The protective-class labelling ratio distribution of the frames from uncertain class in tri-class experiment 2,
the y-axis is the number of frames. (Right) The confusion matrix for the quad-class experiment.

These findings for the uncertain classes suggest that extending our approach to use continuous labels, e.g.
probabilistic distribution, could be useful and help capture the level of the expert raters’ (dis)agreements for
each frame. A full exploration of how to learn the inter-rater discrepancies within the recognition model (e.g.,
replacing one-hot labels with probabilistic distributions [29]) is promising but out of the scope of this paper.

7 CONCLUSION
This work investigated the possibility of protective behavior detection across activity types and continuously
within each activity instance by using IMUs and sEMG data. In our approach to addressing this problem, we
explored both convolutional and recurrent neural networks. The work extends our research presented at the
23rd ACM International Symposium on Wearable Computers (ISWC’19) [11] by: i) providing more extensive
comparisons with traditional methods used in PBD; ii) analysing and discussing how different types of data
augmentation and padding techniques could affect or support PBD; iii) extending the analysis of window length
parameter to understand how our approach could generalize to other datasets for PBD; iv) comparing results on
single timesteps instead of consecutive frames with and without bootstrapping training; and finally v) analyzing
and discussing the robustness of our approach under different levels of ground truth definition (3-class and 4-class
experiments) to consider the level of agreement between raters.

In summary, the best detection result was obtained with a stacked-LSTM, with accuracy and mean F1 score of
0.83 and 0.82 respectively in LOSO cross-validation. If combined with an activity recognition system, our model
can be used to deliver informed feedback during the execution of the activity either during situated exercise
sessions or functional activities. For example, at maximal flexion during a forward reach, when a person with
CP may guard by unhelpfully stiffening the lower back (as shown in Figure 3 (left)) [3], our model can detect
this behavior nearly as soon as it occurs, providing opportunity for just-in-time provision of encouragement
to breathe deeply to facilitate muscle relaxation to the person for example, as a clinician would do. As another
example, if the person demonstrates protective behavior at the start of a sit-to-stand, for instance putting the feet
forward and/or placing the hands on the seat for support (as shown in Figure 3 (right)), our model can recognize
this within a few seconds, enabling the technology to almost immediately suggest a more helpful strategy such
as using a higher chair until confidence and affective capability is increased and enables engagement in greater
challenge in the movement scenario.

Analyses on the parameters relevant to our approach were conducted to understand how they affect PBD and
could inform PBD in future datasets. First, we evaluated different approaches to padding in the segmentation
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of data streams. The results suggest that it is valuable to use a method that does not introduce confounding
behavior (i.e. data that could be interpreted as protective behavior) in creating the data segments. In our case, this
was the 0-padding (the other two we explored were the Last-padding and the Next-padding), and possibly the
Next-padding in the context of full continuous detection. Second, we also compared different data augmentation
methods. Our findings suggest that it may be important to avoid the use of augmentation methods that noticeably
affect the temporal order of the data in a frame (i.e. window). In our experiments, the reversing augmentation
method (which we compared with jittering and cropping methods as well as no augmentation at all) which
altered the temporal dynamics that may characterize how protective behavior is presented during an activity
performed worse than when no augmentation was done. Third, we explored the effect of the window length used
for the data segmentation and we found that the PBD performance generally increased with window length until
a certain peak beyond which performance dropped. This observation could be due to the fact that shorter lengths
provide insufficient information, meanwhile larger lengths may suffer because there is more padding, relative to
the data present in the windows. Although we found the optimal window length to vary with activity type, our
findings suggest that good performances across activity types can be achieved using any window length within a
small range of values. The specific range will depend on both the diversity of targeted activities (rather than the
specific dataset used) and the duration of each one. These three sets of insights that emerge from our work in this
paper which is based on the EmoPain dataset (and so representative in terms of everyday activities, protective
behavior, and the chronic pain population) contribute a set of criteria to select possible optimal parameter settings
for future PBD datasets. Naturally, we acknowledge that further testing on other datasets would be necessary to
fully verify results and learning for those datasets.
Finally, we explored different levels of granularity of ground truth definition (i.e. protective, non-protective,

and uncertain classes) based on majority-voting. Generally, we found that when they were introduced, uncertain
classes are the most difficult to recognize. Still, competitive average performances were obtained in tri-class, and
quad-class PBD (F1 scores of 0.63, 0.65, and 0.55 for two tri-class and one quad-class experiments respectively).
One of the main findings of this exploration is that continuous labels such as probabilistic distributions may be
valuable and feasible for characterising (dis)agreements between the raters. Our next step will investigate this.

ACKNOWLEDGMENTS
Chongyang Wang is supported by the UCL Overseas Research Scholarship (ORS) and Graduate Research Schol-
arship (GRS). Temitayo A. Olugbade is supported by the Future and Emerging Technologies (FET) Proactive
Programme H2020-EU.1.2.2 (Grant agreement 824160; EnTimeMent).

REFERENCES
[1] De Gelder B. 2009. Why bodies? Twelve reasons for including bodily expressions in affective neuroscience. Philosophical Transactions of

the Royal Society B: Biological Sciences 364, 1535 (2009), 3475–3484.
[2] Andreas Bulling et al. 2014. A tutorial on human activity recognition using body-worn inertial sensors. Comput. Surveys 46, 3 (2014),

1–33.
[3] Ahern D. K. et al. 1988. Comparison of lumbar paravertebral EMG patterns in chronic low back pain patients and non-patient controls.

Pain 34, 2 (1988), 153–160.
[4] Albinali Fahd et al. 2009. Recognizing stereotypical motor movements in the laboratory and classroom: a case study with children on

the autism spectrum. 11th international conference on Ubiquitous computing (Ubicomp) (2009).
[5] Aung MSH et al. 2014. Automatic recognition of fear-avoidance behavior in chronic pain physical rehabilitation. Proceedings of the 8th

International Conference on Pervasive Computing Technologies for Healthcare. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering) (2014).

[6] Aung MSH et al. 2016. The automatic detection of chronic pain-related expression: requirements, challenges and the multimodal
EmoPain dataset. IEEE transactions on affective computing 7, 4 (2016), 435–451.

[7] Breivik H. et al. 2006. Survey of chronic pain in Europe: Prevalence, impact on daily life, and treatment. European Journal of Pain 10, 4
(2006), 287–333.

, Vol. 1, No. 1, Article . Publication date: April 2021.



Chronic-Pain Protective Behavior Detection with Deep Learning • 23

[8] Bachlin Marc et al. 2009. Potentials of enhanced context awareness in wearable assistants for Parkinson’s disease patients with the
freezing of gait syndrome. 13th International Symposium on Wearable Computers (ISWC) (2009).

[9] Cook K. et al. 2013. Development and validation of a new self-report measure of pain behaviors. Pain 154, 12 (2013), 2867–2876.
[10] Chavarriaga Ricardo et al. 2013. The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition.

Pattern Recognition Letters 34, 15 (2013), 2033–2042.
[11] Chongyang Wang et al. 2019. Recurrent network based automatic detection of chronic pain protective behavior using mocap and sEMG

data. 23rd ACM International Symposium on Wearable Computers (ISWC) (2019), 225–230.
[12] Cui Yin et al. 2019. Class-balanced loss based on effective number of samples. IEEE Conference on Computer Vision and Pattern Recognition

(CVPR) (2019), 9268–9277.
[13] Dickey J. P et al. 2013. Relationship between pain and vertebral motion in chronic low-back pain subjects. Clinical Biomechanics 7, 4

(2013), 412–418.
[14] Daniel Roggen et al. 2008. Wearable activity tracking in car manufacturing. IEEE Pervasive Computing 7, 2 (2008), 42–50.
[15] Fordyce W. E. et al. 1984. Pain measurement and pain behavior. Pain 18, 1 (1984), 53–69.
[16] Grip H. et al. 2013. Classification of Neck Movement Patterns Related to Whiplash-Associated Disorders Using Neural Networks. IEEE

Transactions on Information Technology in Biomedicine 7, 4 (2013), 412–418.
[17] Greff Klaus et al. 2017. LSTM: A search space odyssey. IEEE transactions on neural networks and learning systems 28, 10 (2017), 2222–2232.
[18] Goodwin Matthew S. et al. 2014. Moving towards a real-time system for automatically recognizing stereotypical motor movements

in individuals on the autism spectrum using wireless accelerometry. 16th International Joint Conference on Pervasive and Ubiquitous
Computing (Ubicomp) (2014).

[19] Guan Yu et al. 2017. Ensembles of deep lstm learners for activity recognition using wearables. Proceedings of the ACM on Interactive,
Mobile, Wearable and Ubiquitous Technologies (IMWUT) 1, 2 (2017), 11.

[20] Hammerla Nils Y et al. 2016. Deep, convolutional, and recurrent models for human activity recognition using wearables. arXiv preprint
arXiv:1604.08880 (2016).

[21] Hochreiter Sepp et al. 1997. Long short-term memory. Neural computation 9, 8 (1997), 1735–1780.
[22] Ha Sojeong et al. 2016. Convolutional neural networks for human activity recognition using multiple accelerometer and gyroscope

sensors. International Joint Conference on Neural Networks (IJCNN) (2016), 381–388.
[23] Huynh Tâm et al. 2007. Scalable recognition of daily activities with wearable sensors. In LoCA 7 (2007), 50–67.
[24] Kleinsmith Andrea et al. 2011. Automatic recognition of non-acted affective postures. IEEE Transactions on Systems, Man, and Cybernetics,

Part B (Cybernetics) 41, 4 (2011), 1027–1038.
[25] Kleinsmith Andrea et al. 2013. Affective body expression perception and recognition: A survey. IEEE Transactions on Affective Computing

4, 1 (2013), 15–33.
[26] Kleinsmith Andrea et al. 2016. The Pain Consortium. UK Pain Messages. Pain News (2016), 21–22.
[27] Kingma Diederik P et al. 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014).
[28] Karg M. et al. 2013. Body movements for affective expression: A survey of automatic recognition and generation. IEEE Transactions on

Affective Computing 4, 4 (2013), 341–359.
[29] Kohl Simon et al. 2018. A probabilistic u-net for segmentation of ambiguous images. Advances in neural information processing systems

(NeurIPS) 31 (2018), 6965–6975.
[30] Lucey Patrick et al. 2011. Painful data: The UNBC-McMaster shoulder pain expression archive database. IEEE International Conference

on Automatic Face & Gesture Recognition and Workshops (FG) (2011).
[31] Morales et al. 2008. Deep convolutional feature transfer across mobile activity recognition domains, sensor modalities and locations.

12th International Symposium on Wearable Computers (ISWC) (2008).
[32] McGraw K. O et al. 1996. Forming inferences about some intraclass correlation coefficients. Psychological methods 1, 1 (1996).
[33] Miotto Riccardo et al. 2017. Deep learning for healthcare: review, opportunities and challenges. Briefings in bioinformatics (2017).
[34] Olugbade T. A. et al. 2014. Bi-Modal Detection of Painful Reaching for Chronic Pain Rehabilitation Systems. Proceedings of the 16th

International Conference on Multimodal Interaction (ICMI) (2014), 455–458.
[35] Olugbade T. A. et al. 2015. Pain Level Recognition using Kinematics and Muscle Activity for Physical Rehabilitation in Chronic Pain. 6th

Conference on Affective Computing and Intelligent Interaction (ACII) (2015), 243–249.
[36] Olugbade T. A. et al. 2018. Human Observer and Automatic Assessment of Movement Related Self-Efficacy in Chronic Pain: from

Movement to Functional Activity. IEEE Transaction on Affective Computing (2018).
[37] Olugbade T. A. et al. 2019. How can affect be detected and represented in technological support for physical rehabilitation? ACM

Transactions on Computer-Human Interaction (2019).
[38] Papi Enrica et al. 2015. A Knee Monitoring Device and the Preferences of Patients Living with Osteoarthritis: A Qualitative Study. BMJ

Open 5, 9 (2015).
[39] Papi Enrica et al. 2016. Wearable technologies in osteoarthritis: a qualitative study of clinicians’ preferences. BMJ Open 6 (2016),

2044–6055.

, Vol. 1, No. 1, Article . Publication date: April 2021.



24 • C. Wang et al.

[40] Prkachin Kenneth M et al. 2008. The structure, reliability and validity of pain expression: Evidence from patients with shoulder pain.
Pain 139, 2 (2008), 267–274.

[41] Rad et al. 2016. Applying deep learning to stereotypical motor movement detection in autism spectrum disorders. 16th International
Conference on Data Mining Workshops (ICDMW) (2016).

[42] Reiss Attila et al. 2012. Introducing a new benchmarked dataset for activity monitoring. 16th International Symposium on Wearable
Computers (ISWC) (2012).

[43] Rivas J. et al. 2021. Multi-label and multimodal classifier for affective states recognition in virtual rehabilitation. IEEE Transactions on
Affective Computing (2021).

[44] Singh A. et al. 2014. Motivating People with Chronic Pain to do Physical Activity: Opportunities for Technology Design. International
Conference on Human Factors in Computing Systems (CHI) (2014), 2803–2812.

[45] Singh A. et al. 2016. Go-with-the-Flow: Tracking, Analysis and Sonification of Movement and Breathing to Build Confidence in Activity
Despite Chronic Pain. Human–Computer Interaction 31, 3-4 (2016), 1–49.

[46] Singh A. et al. 2017. Supporting Everyday Function in Chronic Pain Using Wearable Technology. In International Conference on Human
Factors in Computing Systems (CHI) (2017), 3903–3915.

[47] Sullivan M. J. L. et al. 2006. The influence of communication goals and physical demands on different dimensions of pain behavior. Pain
125, 3 (2006), 270–277.

[48] Um Terry Taewoong et al. 2017. Data augmentation of wearable sensor data for Parkinson’s disease monitoring using convolutional
neural networks. 19th ACM International Conference on Multimodal Interaction (ICMI) (2017), 216–220.

[49] Vlaeyen J. W. S. et al. 2016. The experimental analysis of the interruptive, interfering, and identity-distorting effects of chronic pain.
Behaviour Research and Therapy 86 (2016), 23–34.

[50] Wang Limin et al. 2015. Action recognition with trajectory-pooled deep-convolutional descriptors. IEEE conference on computer vision
and pattern recognition (CVPR) (2015), 4305–4314.

[51] Watson P. J. et al. 1997. Evidence for the Role of Psychological Factors in Abnormal Paraspinal Activity in Patients with Chronic Low
Back Pain. Journal of Musculoskeletal Pain 5, 4 (1997), 41–56.

[52] Cicchetti D V. Guidelines. 1994. Criteria, and Rules of Thumb for Evaluating Normed and Standardized Assessment Instruments in
Psychology. Psychological Assess 6, 4 (1994), 284–290.

[53] Tracey I. and Bushnell M. C. 2009. How Neuroimaging Studies Have Challenged Us to Rethink: Is Chronic Pain a Disease? Journal of
Pain 10, 11 (2009), 1113–1120.

[54] Keefe F. J. and Block A. R. 1982. Development of an observation method for assessing pain behavior in chronic low back pain patients.
Behavior Therapy 13, 14 (1982), 363–375.

[55] Hallgren KA. 2012. Computing inter-rater reliability for observational data: an overview and tutorial. Tutorials in quantitative methods
for psychology 8, 1 (2012).

[56] Jamison R. N. 2016. Are We Really Ready for Telehealth Cognitive Behavioral Therapy for Pain? Pain (2016).
[57] Vlaeyen J. W. S. and Linton S. J. 2000. Fear-avoidance and its consequences in chronic musculoskeletal pain: A state of the art. Pain 85, 3

(2000), 317–332.

, Vol. 1, No. 1, Article . Publication date: April 2021.


